Please wait a minute...
材料导报  2020, Vol. 34 Issue (5): 5061-5067    https://doi.org/10.11896/cldb.18110171
  无机非金属及复合材料 |
高温固体自润滑涂层的制备及可靠性的研究进展
袁晓静1, 关宁1, 侯根良1, 陈小虎1, 马爽2
1 火箭军工程大学作战保障学院,西安 710025;
2 火箭军驻北京局代局,北京 100010
Research Progress on Reliability and Preparation of High Temperature Solid Self-lubricating Coatings
YUAN Xiaojing1, GUAN Ning1, HOU Genliang1, CHEN Xiaohu1, MA Shuang2
1 College of Combat Support, Rocket Force Engineering University, Xi’an 710025, China;
2 Beijing Bureau of Rocket Force, Beijing 100010, China
下载:  全 文 ( PDF ) ( 3284KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高温固体自润滑涂层能够在高温环境为摩擦副界面提供高性能的固体润滑膜,解决了高温环境下传统润滑油脂失效的问题,确保摩擦副在高温环境中可靠工作,并降低了能量损耗,近年来成为摩擦学领域研究的热点问题之一,并得到了快速发展。但是,在30~400 ℃时,诸多高温固体自润滑剂的减摩性能弱,摩擦系数较高。因此,国内外该领域科学家期望获得在30~1 000 ℃范围内摩擦学系数低、性能良好的高性能复合型固体自润滑涂层,其主要由基础相、润滑相和增强相组成,且它们的共同作用提供涂层在高温环境下的润滑能力。最近的研究显示,金属三元氧化物基高温自润滑涂层——主要以过渡族金属三元氧化物为基础相,由含有Magnéli同源相的二元和三元氧化物润滑材料发展而来的新型高温固体自润滑材料,逐渐成为解决高温域自润滑问题的首选材料。对此,围绕高温固体自润滑涂层的工程应用,发现其面临三个方面的挑战:(1)高性能复合固体自润滑涂层的体系设计;(2)适应复杂结构的可靠制备工艺;(3)服役期间的寿命可靠性评估。
  针对以上三个方面的问题,本文从高温自润滑涂层的设计体系、制备工艺发展、可靠性评估三个层面进行了综述,期望为高可靠性高温自润滑涂层的制备提供技术支持。首先是在设计体系方面,发现高温固体自润滑涂层不但要满足传统固体自润滑涂层包含基础相、润滑相和增强相及其共同作用提供自润滑的要求,还要满足高温环境的特殊要求。
  其次,科学家们期望获得制备高性能高温固体自润滑涂层的可靠工艺,但是均受到了工艺简便性与适应能力以及高温零部件结构表面复杂度等问题的限制,从而难以实现工程化。根据高温自润滑涂层的设计要求,在梳理介绍高温固体自润滑涂层的工艺中,发现高压高超音速喷涂技术在此领域具有一定的技术便捷性,可实现高温固体自润滑涂层的工程化。
  再次,分析梳理了高温自润滑涂层在服役周期内的寿命可靠性评估进展。研究发现,高温固体自润滑涂层的服役寿命逐渐从实验统计分析、应力与涂层结构之间的关联影响,向结合涂层微观界面与宏观性能的跨尺度结合的数值分析发展,这将为高可靠性高温固体自润滑涂层的制备和服役寿命评估信息化提供技术支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁晓静
关宁
侯根良
陈小虎
马爽
关键词:  高温自润滑涂层  结构  可靠性    
Abstract: High temperature solid self-lubricating coating can provide high performance lubricating film for the interface of friction pairs in high temperature environment, solve the problem of failure of traditional lubricating grease in high temperature environment, ensure the reliable operation of friction pairs in high temperature environment, and reduce energy loss. It has become one of the hot issues in the field of Trilogy in recent years, and developed rapidly. However, many high-temperature solid self-lubricants have weak friction reduction and high friction coefficient at 30—400 ℃. For this reason, scientists in this field at home and abroad expect to obtain high performance composite solid self-lubricating coatings with low tribological coefficient and good performance in the range of 30—1 000 ℃. It mainly consists of basic phase, lubricating phase and strengthening phase, and work together to provide lubrication ability in high temperature environment. Recent studies have shown that metal ternary oxide-based high temperature self-lubricating coatings are mainly based on transition metal ternary oxides and developed from binary and ternary oxide lubricating materials containing Magnéli homologous phase. They have gradually become the preferred materials to solve the problem of self-lubrication in high temperature region. In view of this, there are three challenges facing the engineering application of overheated solid self-lubricating coatings: (1) system design of high-performance composite solid self-lubricating coatings; (2) reliable preparation process for complex structures; (3) life reliability evaluation during service.
  In view of the above three aspects, this paper is expected to provide technical support for the preparation of high-reliability high-temperature self-lubricating coatings by reviewing the design system, preparation process development and reliability evaluation of high-temperature self-lubricating coatings. Firstly, in the aspect of design system, it is found that high temperature solid self-lubricating coatings should not only satisfy the requirement of traditional solid self-lubricating coatings including base phase, lubricating phase and reinforcement phase, but also provide self-lubrication together, and meet the special requirements of high temperature environment.
  Then, scientists expect to obtain a reliable process for preparing high-performance high-temperature solid self-lubricating coatings, but they are limited by the simplicity and adaptability of the process, as well as the surface complexity of high-temperature components, and it is difficult to achieve engineering. According to the design requirements of high temperature self-lubricating coatings, it is found that high pressure and hypersonic spraying technology has certain technical convenience in this field and can realize the engineering of high temperature solid self-lubricating coatings. Thirdly, the progress of life reliability evaluation of high temperature self-lubricating coatings during service life is analyzed and summarized. It is found that the service life of high-temperature solid self-lubricating coatings has gradually evolved from statistical analysis of experiments, the correlation between stress and coating structure to numerical analysis combining micro-interface and macro-performance of coatings. This will provide technical support for the preparation of high-reliability high-temperature solid self-lubricating coatings and informationization of service life evaluation.
Key words:  high temperature self-lubrication coating    structure    reliability
               出版日期:  2020-03-10      发布日期:  2020-01-16
ZTFLH:  TH117  
基金资助: 国家自然科学基金(51405497)
通讯作者:  yuanxj2003@163.com   
作者简介:  袁晓静,副教授、博士生导师。1979年出生,陕西西安人。长期从事装备表面摩擦学理论与技术研究,发表论文60余篇,SCI、EI检索30余篇。
引用本文:    
袁晓静, 关宁, 侯根良, 陈小虎, 马爽. 高温固体自润滑涂层的制备及可靠性的研究进展[J]. 材料导报, 2020, 34(5): 5061-5067.
YUAN Xiaojing, GUAN Ning, HOU Genliang, CHEN Xiaohu, MA Shuang. Research Progress on Reliability and Preparation of High Temperature Solid Self-lubricating Coatings. Materials Reports, 2020, 34(5): 5061-5067.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110171  或          http://www.mater-rep.com/CN/Y2020/V34/I5/5061
1 Wang R, Gao D Q, He N R, et al. Surface Technology, 2017,46(9),127(in Chinese).
王蕊,高东强,何乃如,等. 表面技术,2017,46(9),127.
2 Fang L Y, Yao Y S, Yan H, et al. Applied Laser, 2017, 37(3),459(in Chinese).
房刘杨,姚延松,闫华,等. 应用激光,2017, 37(3),459.
3 Dellacorte C, Edmonds B J. NASA PS400: a new high temperature solid lubricant coating for high temperature wear application. NASATM-215678, 2009.
4 Chen J M, Lu X W, Li H X, et al. Tribology, 2014, 34(5),592(in Chinese).
陈建敏,卢小伟,李红轩,等. 摩擦学学报,2014,34(5),592.
5 Li W S, Fan X J, Yang J, et al. Tribology, 2018,35(9),592(in Chinese).
李文生,范祥娟,杨军,等,摩擦学学报,2018,35(9),592.
6 Hao E K, An Y L, Zhao X Q, et al. Surface Technology, 2018, 47(6),104 (in Chinese).
郝恩康,安宇龙,赵晓琴,等. 表面技术,2018,47(6),104.
7 Liu W M, Weng L J, Sun J Y. Space lubricant material and technique, Science Press, China,2009(in Chinese).
刘维民,翁立军,孙嘉奕. 空间润滑材料与技术手册,科学出版社,2009.
8 Zhu S Y, Bi Q L, Yang J, et al. Tribology International, 2011, 44(4), 445.
9 Huang C B, Du L Z, Zhang W G. Journal of Alloys and Compounds, 2009,479(1-2), 777.
10 Liu X B, Liu H Q, Liu Y F, et al. Composites Part B: Engineering, 2013, 53, 347.
11 Cui G J, Han J R, Wu G X. Wear, 2016, 346-347, 116.
12 Yuan X J, Zha B L, et al. Tribology Transactions, 2017, 60(2),170.
13 Kong L Q, Bi Q L, Niu M Y, et al. Journal of the European Ceramic Society, 2013, 33(1), 51.
14 Ouyang J H, Sasaki S, Murakami T, et al. Materials Science and Engineering: A, 2004, 386(1-2), 234.
15 Song J, Zhang Y, Fang Y, et al. Journal of the European Ceramics Society, 2015,35,1581.
16 Su Y, Zhang Y, Song J, et al. Tribology Letters, 2016, 61, 1.
17 Wu G Y, Xu C H, Xiao G C, et al. Ceramics International, 2018,44(5),5550.
18 Ren J, Chen H H, Ma B. Wear, 2017, 376-377, 363.
19 Wang W, Du A, Fan Y Z, et al. Tribology International, 2018, 120, 369.
20 Ren J, Zhang Y, Hu H, et al. Applied Surface Science, 2016, 360, 970.
21 Shi X L, Xu Z S, Wang M, et al. Wear, 2013, 303, 486.
22 Walck S D, Donley M S, Zabinski J S, et al. Journal of Material Research, 1994, 9(1), 236.
23 Wang J H, Liu Y, Duan D L, et al. Tribology Transactions, 2016, 59(1), 139.
24 Stone D S, Harbin S, Mohseni H, et al. Surface & Coatings Technology, 2013, 217, 140.
25 Liu E Y, Bai Y P, Gao Y M, et al. Tribology International, 2014, 80, 25.
26 Vardelle A, Moreau C, Akedo J, et al. Journal of Thermal of Thermal Spray Technology, 2016,25(8), 1376.
27 Lu F, Tang Z H, Sun Z H, et al. Environment experiment and surface protect for airspace material, National Defense Industry Press, China, 2012, pp.30(in Chinese).
陆峰,汤智慧,孙志华,等. 航空材料环境试验及表面防护技术,国防工业出版社,2012, pp.30.
28 Zhang Y C, Jia C C, He L M, et al. Lubrication Engineering, 2010 (3),57(in Chinese).
张有茶,贾成厂,何利民,等. 润滑与密封, 2010 (3), 57.
29 Zha B L, Wang H G, Yuan X J. Application of high velocity oxygen fuel spraying, National Defense Industry Press, China, 2013, pp.10(in Chinese).
查柏林,王汉功,袁晓静. 超音速火焰喷涂技术及应用,国防工业出版社,2013, pp.10.
30 Chen J, Zhao X Q, Zhou H D, et al. Tribology Letters, 2014, 56(1), 55.
31 An Y L, Chen J, Hou G L, et al. Tribology Letters, 2015,58, 34.
32 Dellacorte C, Laskowski J A. Tribology Transactions, 1997, 40, 163.
33 Gu S L, Li G L, Wang H D, et al. Materials Science and Engineering of Powder Metallurgy, 2013(4), 560(in Chinese).
顾林松, 李国禄, 王海斗, 等. 粉末冶金材料与工程,2013(4), 560.
34 Chen J M, Hou G L, Chen J, et al. Applied Surface Science, 2012, 261, 584.
35 Yuan J H, Zhu Y C, Lei Q, et al. China Surface Engineering, 2012, 25(2), 31(in Chinese).
袁建辉,祝迎春,雷强,等.中国表面工程,2012, 25(2), 31.
36 Yuan X J, Zha B L, Chen X H, et al. Tribology, 2017(2), 240(in Chinese).
袁晓静, 查柏林, 陈小虎, 等. 摩擦学学报, 2017(2), 240.
37 Xu N, Zhang J, Hou W L, et al. Acta Metallurgica Sinica, 2009, 45(8), 943(in Chinese).
徐娜,张甲,侯万良,等. 金属学报, 2009, 45(8), 943.
38 Wang R J, Qian Y Y, Huang X O, et al. Transactions of the China Wel-ding Institution, 2003, 24(5), 88(in Chinese).
汪瑞军, 钱乙余, 黄小鸥, 等.焊接学报, 2003, 24(5), 88.
39 Salmaliyan M, Ghaeni M F, Ebrahimnia M. Surface & Coatings Techno-logy, 2017, 321, 81.
40 Tang J M. Applied Surface Science, 2016, 365, 202.
41 Cao T K, Sun H, Wang X M. Journal of Materials Engineering, 2017, 45(10), 88(in Chinese).
曹同坤,孙何,王晓明. 材料工程,2017,45(10), 88.
42 Shan C S. Research on process parameters and performance of self-lubricating coatings by ESD. Master’s Thesis, Qingdao University of Science & Technology, China, 2015(in Chinese).
单春生. 基于电火花沉积自润滑涂层的工艺参数和性能的研究. 硕士学位论文,青岛科技大学,2015.
43 Grigore E, Ruset C, Luculescu C. Surface & coatings technology, 2011, 205(19),29.
44 Duminica F D, Belchi R, Libralesso L, et al. Surface & Coatings Technology, 2018, 337, 396.
45 Lv W Q, Wang L P, Cao Y Z, et al. China Physics Letters, 2016, 33(9), 095201.
46 Thakur A, Gangopadhyay S. Tribology International, 2016, 102, 198.
47 Chen X C, Peng Z J, Yu X, et al. Applied Surface Science, 2011, 257(8), 3180.
48 Zhang S T, Zhou J S, Guo B G, et al. Material Science Engineering A, 2008, 491, 47.
49 Lu X L, Liu X B, Yu P C, et al. Tribology International, 2016, 101, 356.
50 Lu X L, Liu X B, Yu P C, et al. Optics & Laser Technology, 2016,78, 87.
51 Zhai Y J, Liu X B, Qiao S J, et al. Optics & Laser Technology, 2017, 89, 97.
52 Wang J Y, Shan Y, Guo H J, et al. Tribology Letters, 2015, 59(3), 48.
53 Liu H D. The design of high-performance NiCr-Al2O3 matrix lubricating materials at elevated temperature basedonthe solid state reaction. Master’s Thesis, Xi’an Shiyou University, 2018(in Chinese).
刘红豆. 基于固相反应设计高性能的NiCr-Al2O3基高温润滑材料. 硕士学位论文,西安石油大学,2018.
54 Zhang X P, Shang J Z, Chen X, et al. Journal of National University of Defense Technology, 2013, 35(6), 53(in Chinese).
张详坡,尚建忠,陈循,等. 国防科技大学学报, 2013, 35(6), 53.
55 Xu B S, Wang H D, Piao Z Y, et al. Acta Metallurgica Sinica, 2011, 47(11), 1355(in Chinese).
徐滨士,王海斗,朴钟宇,等. 金属学报, 2011, 47(11), 1355.
56 Xu Z L. Study on sliding and fatigue competing failure disciplinarain of NiCr-Cr3C2 coating deposited by supsonic plasam spraying. Master’s Thesis, Hebei University of Technology, China, 2015(in Chinese).
许中林. 超音速等离子喷涂NiCr/Cr3C2涂层磨损疲劳竞争性失效规律研究. 硕士学位论文,河北工业大学, 2015.
57 Khader I, Rasche S, Lube T. Engineering Fracture Mechanics, 2017,169, 292.
58 Chalabi N, Beldjilali B, Dahane M, et al. Computers & Industrial Engineering,2016, 102, 440.
59 Piao Z, Xu B, Wang H, et al. Tribology International, 2010, 43(1), 252.
60 Zhou J L, Wu G Q, Chen X Y. Chinese Journal of Mechanical Enginee-ring, 2008, 44(2), 37(in Chinese).
周井玲,吴国庆,陈晓阳. 机械工程学报, 2008, 44(2), 37.
61 Yuan X J, Zha B L, Yao C J, et al. Materials Science and Technology, 2019,27(2), 70(in Chinese).
袁晓静,查柏林,姚春江,等. 材料科学与工艺,2019,27(2), 70.
62 Xiao Y Y, Shi W K, Luo J. Vacuum, 2015,122, 17.
63 Sause M G R, Haider F, Horn S. Surface & Coatings Technology, 2009, 204(3), 300.
64 Wang H D, Zhang Z Q, Li G L, et al. Tribology, 2012, 32(3),251(in Chinese).
王海斗,张志强,李国禄,等. 摩擦学学报,2012, 32(3),251.
65 Pei T L. The research of quantitative diagnosis technology on rolling contact fatigue of bearing based on acoustic emission. Master’s Thesis,Yan-shan University, China,2016(in Chinese).
裴桃林. 基于声发射的轴承滚动接触疲劳量化诊断技术研究. 硕士学位论文, 燕山大学,2016.
66 Xu Z, Zhang H, Yan Z, et al. International Journal of Fatigue, 2016, 95,156.
67 Gao H Y, Huang H Z, Lv Z Q, et al. Journal of Mechanical Science and Technology, 2015, 29(8), 3215.
68 Chen Z B, Wang Z G, Zhu S J. Surface & Coating Technology, 2011, 205(15), 3931.
69 Xu Y, Lv Y F, Huang J Y. Journal of Beijing University of Chemical Technology, 2010(6), 136(in Chinese).
徐野,吕亚非,黄晋阳. 北京化工大学学报,2010(6), 136.
70 Wang Y J, Liu Z M. Tribology, 2006, 26(4), 348(in Chinese).
王砚军,刘佐民. 摩擦学学报,2006, 26(4), 348.
71 Hong Z J, Chen J C, Feng J, et al. Tribology, 2008(5), 406(in Chinese).
洪振军,陈敬超,冯晶,等. 摩擦学学报,2008(5), 406.
72 Ji G C, Li C J, Wang Y Y, et al. Surface & Coatings Technology, 2006, 200, 6749.
73 Matthews S, James B, Hyland M. Surface and Coatings Technology, 2009, 203(9), 1144.
74 Bolot R, Seichepine J L, Qiao J H, et al. In: Proceedings of the 2010 International Thermal Spray Conference. Singapore,2010,pp. 651.
75 Ghafouri-Azar R, Mostaghimi J, Chandra S. Compute Material Science, 2006, 35(1),13.
76 Tillmann W, Klusemann B, Nebel J, et al. Journal of Thermal Spray Technology, 2011, 20(1), 328.
77 Klusemann B, Denzer R, Svendsen B. Journal of Thermal Spray Techno-logy, 2012, 21(1), 96.
[1] 孙宏宇, 高静怡, 潘超. 蒲公英基三维分级多孔炭的制备及电化学性能[J]. 材料导报, 2020, 34(4): 4007-4012.
[2] 王晴, 康升荣, 吴丽梅, 张强, 丁兆洋. 地聚合物凝胶结构建模及分子动力学模拟[J]. 材料导报, 2020, 34(4): 4056-4061.
[3] 王鑫, 仲崇贵, 李桦, 董正超. 超导薄膜FeSe和FeS0.5Se0.5的磁性与电子特性的研究[J]. 材料导报, 2020, 34(4): 4068-4072.
[4] 李卿, 赵国瑞, 马文有, 余红雅, 刘敏. 选区激光熔化成形多孔Ti6Al4V (ELI)合金的拉伸性能及断裂机制[J]. 材料导报, 2020, 34(4): 4073-4076.
[5] 陈健, 周莉, 刘金洋, 吉红伟, 杨勇, 刘伟, 邓欣, 伍尚华. 真空和渗氮烧结WC-TiC-Co硬质合金的梯度结构形成机理研究[J]. 材料导报, 2020, 34(4): 4077-4082.
[6] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[7] 易鹏,吴国娟,段文焱,吴敏,潘波. 生物炭的改性和老化及环境效应的研究进展[J]. 材料导报, 2020, 34(3): 3037-3043.
[8] 朱文娟,高凤雨,唐晓龙,易红宏,于庆君,赵顺征. 尖晶石型催化剂的制备及在气态污染物净化中的应用综述[J]. 材料导报, 2020, 34(3): 3044-3055.
[9] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[10] 张国忠,李艳辉,吴立成,张伟. Fe基纳米晶软磁合金退火脆性的研究进展[J]. 材料导报, 2020, 34(3): 3165-3171.
[11] 季根顺, 陈晓龙, 贾建刚, 李小龙, 龚静博, 郝相忠. 液相汽化TG-CVI法制备C/C复合材料的组织和性能[J]. 材料导报, 2020, 34(2): 2029-2033.
[12] 申嘉荣, 徐千军. 高温对混凝土孔隙结构改变和抗压强度降低作用的规律研究[J]. 材料导报, 2020, 34(2): 2046-2051.
[13] 王官充, 冯拉俊. Er含量对FeSiB合金结构演变的影响[J]. 材料导报, 2020, 34(2): 2088-2092.
[14] 郭增革, 张斌, 姜兆辉, 贾曌, 丁作伟, 程博闻, 李鑫. 压力流场中含炭黑聚对苯二甲酸乙二醇酯熔体的流变特性[J]. 材料导报, 2020, 34(2): 2159-2162.
[15] 刘建伟,王嘉楠,朱蕾,延卫. 柔性锂硫电池材料:综述[J]. 材料导报, 2020, 34(1): 1155-1168.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed