Research Progress on Modification and Aging of Biochar and Its Environmental Implications
YI Peng1,2,WU Guojuan1,2,3,DUAN Wenyan1,2,WU Min1,2,PAN Bo1,2,
1 Faculty of Environmental Science and Engineering,Kunming University of Science and Technology,Kunming 650500,China 2 Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control,Kunming 650500,China 3 Faculty of Architectural Engineering,Kunming University of Science and Technology,Kunming 650500,China
Abstract: Biochar is a carbon-rich solid material produced by pyrolysis of biomass under anoxic or anaerobic conditions. As an advanced multi-functional material, biochar has shown potential application in the field of soil remediation, greenhouse gas emission reduction and pollution control, which have attracted wide research attention. Various techniques have been developed to modify biochar in order to enhance their adsorption performance by changing the physical and chemical properties of biochar. However, when biochar enters the environment, the biological and abiotic processes can change its physical and chemical properties. As aging progresses, biochar is gradually degraded from surface to interior, the size of benzene ring is smaller, and the surface oxygen functional groups are increased. However, it is unknown how these modified biochars persist in the applied systems, let alone their potential environmental implications. Studies have shown that increased oxidation degree and surface functional group of biochar enhance the adsorption capacity of biochar, promote the interaction of biochar with soil components, plant nutrients and pollutants, and thus reduce the environmental risk of pollutants. Other studies have also indicated that the specific surface area and pore volume of biochars are reduced after aging, resulting in their reduction of adsorption capacity. Meanwhile, aging and modification may reduce the stability of biochar in the environment, leading to the release of biochar components (dissolved organic matter and dissolved black carbon) and endogenous pollutants. Environmentally persistent free radicals (EPFRs) and short life free radicals produced by biochar can degrade organic pollutants by free radical pathway. Singlet oxygen (1O2) induced by biochar can also degrade organic pollutants in a non-free radical pathway. This paper reviewed the research progress on the modification of biochar, the structural changes during their aging, the uncertainty of interaction between biochar and chemical substances, the interaction between biochar and soil components, and the environmental risks of the modified and the aged biochar. The aging of modified biochar and its environmental effects were analyzed. Finally, the prospects about stability, functional effects and environmental risks of biochar after being applied are proposed. It is emphasized that the dynamic changes of biochar properties should be fully considered during its use and management. The intensive study on the practical application of biochar will provide the necessary theoretical basis for the establishment of its technical management and evaluation.
作者简介: 易鹏,2016年6月获得南华大学环境工程学士学位。现为昆明理工大学环境科学与工程学院博士研究生。目前在潘波教授的指导下进行生物炭环境效应的研究;潘波,昆明理工大学环境科学与工程学院院长、博士、教授、博士生导师。获北京大学环境地理学博士学位,美国麻省大学博士后。国家自然科学基金杰出青年基金获得者,国家“万人计划”科技领军人才。现任European Journal of Soil Science副主编,“全国工人先锋号”带头人,云南省土壤环境与生态安全省创新团队负责人,云南省土壤固碳与污染控制重点实验室主任,主要研究方向为有机碳更替与污染物行为的耦合与调控;持久性自由基的产生机制和环境效应。
引用本文:
易鹏,吴国娟,段文焱,吴敏,潘波. 生物炭的改性和老化及环境效应的研究进展[J]. 材料导报, 2020, 34(3): 3037-3043.
YI Peng,WU Guojuan,DUAN Wenyan,WU Min,PAN Bo. Research Progress on Modification and Aging of Biochar and Its Environmental Implications. Materials Reports, 2020, 34(3): 3037-3043.
1 Zheng B X, Ding K, Yang X R, et al. Science of the Total Environment, 2019, 647, 1113. 2 Xu M, Wu J, Zhang X H, et al. Act Ecologica Sinica, 2018, 38(2), 393 (in Chinese). 徐敏, 伍钧, 张小洪, 等. 生态学报, 2018, 38(2), 393. 3 Cha J S, Park S H, Jung S C, et al. Journal of Industrial and Enginee-ring Chemistry, 2016, 40,1. 4 Wang B, Gao B, Fang J. Critical Reviews in Environmental Science & Technology, 2018, 47(22), 1. 5 Qian K Z, Kumar A, Zhang H L, et al. Renewable & Sustainable Energy Reviews, 2015, 42(1), 1055. 6 Xiong X N, Yu I K M, Cao L C, et al. Bioresource Technology, 2017, 246, 254. 7 Koltowski M, Charmas B, Skubiszewska-Zieba J, et al. Ecotoxicology and Environmental Safety, 2017, 136, 119. 8 Koltowski M, Hilber I, Bucheli T D, et al. Science of the Total Environment, 2016, 566, 1023. 9 Hamer U, Marschner B, Brodowski S, et al. Organic Geochemistry, 2004, 35(7), 823. 10 Kuzyakov Y, Subbotina I, Chen H Q, et al. Soil Biology and Biochemistry, 2009, 41(2), 210. 11 Rajapaksha A U, Chen S S, Tsang D C W, et al. Chemosphere, 2016, 148, 276. 12 Zhang C S, Liu L, Zhao M H, et al. Environmental Science and Pollution Research, 2018, 25(22), 21525. 13 Sizmur T, Fresno T, Akgul G, et al. Bioresource Technology, 2017, 246, 34. 14 Ding Z H, Hu X, Wan Y S, et al. Journal of Industrial and Engineering Chemistry, 2016, 33, 239. 15 Lim W C, Srinivasakannan C, Balasubramanian N. Journal of Analytical and Applied Pyrolysis, 2010, 88(2), 181. 16 Lin Y, Munroe P, Joseph S, et al. Chemosphere, 2012, 87(2), 151. 17 Li J H, Lv G H, Bai W B, et al. Desalination and Water Treatment, 2016, 57(10), 4681. 18 Cazetta A L, Vargas A M M, Nogami E M, et al. Chemical Engineering Journal, 2011, 174(1), 117. 19 Xue Y W, Gao B, Yao Y, et al. Chemical Engineering Journal, 2012, 200, 673. 20 Borchard N, Wolf A, Laabs V, et al. Soil Use and Management, 2012, 28(2), 177. 21 Shim T, Yoo J, Ryu C, et al. Bioresource Technology, 2015, 197, 85. 22 Zhang X, Zhang S H, Yang H P, et al. Bioenergy Research, 2013, 6(4), 1147. 23 Zhu L, Lei H W, Wang L, et al. Journal of Analytical and Applied Pyrolysis, 2015, 115, 149. 24 Lyu H H, Gao B, He F, et al. Environmental Pollution, 2018, 233, 54. 25 Michalekov-Richveisova B, Fristak V, Pipiska M, et al. Environ Science and Pollution Research, 2017, 24(1), 463. 26 Zhang X K, Wang H L, He L Z, et al. Environmental Science and Pollution Research, 2013, 20(12), 8472. 27 Gao R L, Tang M, Fu Q L, et al. Environmental Science, 2017, 38(1), 361. 高瑞丽, 唐茂, 付庆灵, 等. 环境科学, 2017, 38(1), 361. 28 Shang M R, Liu Y G, Liu S B, et al. RSC Advances, 2016, 6(88), 85202. 29 Liu T Z, Gao B, Fang J, et al. RSC Advances, 2016, 6(29), 24314. 30 Wang Y, Mei X Y, Duan Z Y, et al. Materials Review A:Review Papers, 2017, 31(10), 138. 王耀, 梅向阳, 段正洋, 等. 材料导报:综述篇, 2017, 31(10), 138. 31 Zhang M, Gao B, Yao Y, et al. Chemical Engineering Journal, 2012, 210, 26. 32 Zhang M, Gao B, Yao Y, et al. Science of the Total Environment, 2012, 435, 567. 33 Hao Z, Wang C H, Yan Z S, et al. Chemosphere, 2018, 211, 962. 34 Zhou X H, Liu Y C, Zhou J J, et al. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91, 457. 35 Zhang M, Gao B, Varnoosfaderani S, et al. Bioresource Technology, 2013, 130, 457. 36 Yao Y, Zhang Y, Gao B, et al. Environmental Science and Pollution Research, 2018, 25(26), 25659. 37 Inyang M, Gao B, Pullammanappallil P, et al. Bioresource Technology, 2010, 101(22), 8868. 38 Bird M I, Moyo C, Veenendaal E M, et al. Global Biogeochemical Cycles, 1999, 13(4), 923. 39 Braadbaart F, Poole I, van Brussel A A. Journal of Archaeological Science, 2009, 36(8), 1672. 40 Cheng C H, Lehmann J. Chemosphere, 2009, 75(8), 1021. 41 Cao T, Chen W F, Yang T X, et al. Bioresources, 2017, 12(3), 6366. 42 Fang Y, Singh B, Singh B P, et al. European Journal of Soil Science, 2014, 65(1), 60. 43 Hockaday W C, Grannas A M, Kim S, et al. Geochimica Et Cosmochimica Acta, 2007, 71(14), 3432. 44 Lu K P, Yang X, Shen J J, et al. Agriculture, Ecosystems & Environment, 2014, 191, 124. 45 Liu S, Xu W H, Liu Y G, et al. Science of the Total Environment, 2017, 592, 546. 46 Chen T, Zhou Z Y, Xu S, et al. Bioresource Technology, 2015, 190, 388. 47 Cui X Q, Fang S Y, Yao Y Q, et al. Science of the Total Environment, 2016, 562, 517. 48 Zhang F, Wang X, Yin D X, et al. Journal of Environmental Management, 2015, 153, 68. 49 Aran D, Antelo J, Fiol S, et al. Bioresource Technology, 2016, 212, 199. 50 Li H B, Dong X L, da Silva E B, et al. Chemosphere, 2017, 178, 466. 51 Gu J Q, Zhou W Q, Jiang B Q, et al. Chemosphere, 2016, 145, 431. 52 Chen J, Zhang D, Zhang H, et al. Science of the Total Environment, 2017, 579, 598. 53 Ren X H, Sun H W, Wang F, et al. Chemosphere, 2016, 144, 2257. 54 Fan S S, Tang J, Wang Y, et al. Journal of Molecular Liquids, 2016, 220, 432. 55 Trigo C, Spokas K A, Cox L, et al. Journal of Agricultural and Food Chemistry, 2014, 62(45), 10855. 56 Kupryianchyk D, Hale S, Zimmerman A R, et al. Chemosphere, 2016, 144, 879. 57 Zhang X K, Sarmah A K, Bolan N S, et al. Chemosphere, 2016, 142, 28. 58 Villacanas F, Pereira M F R, Orfao J J M, et al. Journal of Colloid and Interface Science, 2006, 293(1), 128. 59 Zhu D Q, Pignatello J J. Environmental Science & Technology, 2005, 39(7), 2033. 60 Fan Y, Wang B, Yuan S H, et al. Bioresource Technology, 2010, 101(19), 7661. 61 Sun K, Jin J, Keiluweit M, et al. Bioresource Technology, 2012, 118, 120. 62 Ahmad M, Rajapaksha A U, Lim J E, et al. Chemosphere, 2014, 99, 19. 63 Chen C P, Zhou W J, Lin D H. Bioresource Technology, 2015, 179, 359. 64 Shi K S, Xie Y, Qiu Y P. Ecotoxicology and Environmental Safety, 2015, 114, 102. 65 Fang G D, Liu C, Wang Y J, et al. Applied Catalysis B-Environmental, 2017, 214, 34. 66 Yang J, Pan B, Li H, et al. Environmental Science & Technology, 2016, 50(2), 694. 67 Jiang B, Dai D J, Yao Y Y, et al. Chemical Communications, 2016, 52(61), 9566. 68 Yin R L, Guo W Q, Wang H Z, et al. Chemical Engineering Journal, 2019, 357, 589. 69 Mia S, Dijkstra F A, Singh B. Plant and Soil, 2018, 424(1-2), 639. 70 Van De Voorde T F J, Bezemer T M, Van Groenigen J W, et al. Ecological Applications, 2014, 24(5), 1167. 71 Alozie N, Heaney N, Lin C X. Science of the Total Environment, 2018, 630, 1188. 72 Kookana R S. Australian Journal of Soil Research, 2010, 48(6-7), 627. 73 Yang Y N, Sheng G Y. Environmental Science & Technology, 2003, 37(16), 3635. 74 Chen Y, Liu Y X, Chen Z J, et al.Chinese Journal of Applied Ecology, 2018, 29(1), 314. 陈颖, 刘玉学, 陈重军, 等. 应用生态学报, 2018, 29(1), 314. 75 Koltowski M, Hilber I, Bucheli T D, et al. Chemical Engineering Journal, 2017, 310, 33. 76 Oleszczuk P, Josko I, Kusmierz M. Journal of Hazardous Materials, 2013, 260, 375. 77 Mia S, Dijkstra F A, Singh B. Advances in Agronomy, 2017, 141, 1. 78 Chen Q, Zheng J W, Xu J C, et al. Chemical Engineering Journal, 2019, 356, 341. 79 Chen Q, Zheng J W, Zheng L C, et al. Chemical Engineering Journal, 2018, 350, 1000. 80 Liao S H, Pan B, Li H, et al. Environmental Science & Technology, 2014, 48(15), 8581. 81 Zhang Y L, Cao M M, Wang J Y, et al. Journal of Shenyang Agricultural University, 2017, 48(4), 482. 张玉兰, 曹明明, 王俊宇, 等. 沈阳农业大学学报, 2017, 48(4), 482. 82 Shao H Y, Zhang E F, Wang X D, et al. Acta Scientiae Cirumstantiae, 2019, 39(2), 537. 邵慧芸, 张阿凤, 王旭东, 等. 环境科学学报, 2019, 39(2), 537. 83 Li J W, Gu K, Tang C S, et al. Journal of Zhejiang University (Engineering Science), 2018, 52(1), 192. 李金文, 顾凯, 唐朝生, 等. 浙江大学学报(工学版), 2018, 52(1), 192.