Please wait a minute...
材料导报  2020, Vol. 34 Issue (3): 3037-3043    https://doi.org/10.11896/cldb.19030080
  材料与可持续发展(三)—环境友好材料与环境修复材料 |
生物炭的改性和老化及环境效应的研究进展
易鹏1,2,吴国娟1,2,3,段文焱1,2,吴敏1,2,潘波1,2,
1 昆明理工大学环境科学与工程学院,昆明650500
2 云南省土壤固碳与污染控制重点实验室,昆明650500
3 昆明理工大学建筑工程学院,昆明650500
Research Progress on Modification and Aging of Biochar and Its Environmental Implications
YI Peng1,2,WU Guojuan1,2,3,DUAN Wenyan1,2,WU Min1,2,PAN Bo1,2,
1 Faculty of Environmental Science and Engineering,Kunming University of Science and Technology,Kunming 650500,China
2 Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control,Kunming 650500,China
3 Faculty of Architectural Engineering,Kunming University of Science and Technology,Kunming 650500,China
下载:  全 文 ( PDF ) ( 7712KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 生物炭是生物质在缺氧或者绝氧条件下通过高温热解后生成的富含碳的固体材料。生物炭作为一种先进的多功能材料,在土壤改良、温室气体减排、污染控制等领域都展现出应用潜力,受到了广泛的关注。研究人员通过改变生物炭的物理和化学性质,开发了多种生物炭改性技术,以提升生物炭的吸附功能。然而,生物炭一旦进入环境后,在生物和非生物的作用下会被老化,其物理和化学性质都会发生变化。随着老化的进行,生物炭逐渐由表面到内部进行降解,苯环结构由大变小,表面含氧官能团增加。这些生物炭的改性、在环境系统中的老化、功能的持久性及在这些动态过程中性质的变化,势必会对其环境效应产生影响。研究表明生物炭氧化程度的加重和表面官能团活性的提升增强了生物炭的吸附能力,促进了生物炭与土壤、植物营养元素和污染物的相互结合,降低了污染物的环境风险。另外的研究指出,老化过程导致生物炭的比表面积和孔体积降低,从而降低了生物炭的吸附能力。同时,老化和改性可能会降低生物炭在环境中的稳定性,导致生物炭的组分(溶解性有机质和溶解性炭黑)和生物炭内源污染物的释放。且由生物炭产生的环境持久性自由基(EPFRs)和短寿命自由基(羟基自由基·OH和超氧阴离子自由基·O2-)能以自由基途径降解有机污染物。生物炭活化一些无机分子产生的单线态氧(1O2)也能以非自由基的途径降解有机污染物。本文对生物炭的改性方法、老化导致的结构变化、老化导致其与化学物质相互作用的不确定性、生物炭与土壤组分的相互作用以及老化生物炭的环境风险方面的研究展开了综述,分析了改性生物炭的老化及其环境效应。最后对生物炭使用后在动态变化过程中的稳定性、功能效果和环境风险等方面提出了展望,强调了生物炭在使用和管理中要充分考虑其性质的动态变化。对生物炭在实际应用领域的深入研究将为其技术管理和评估的建立提供必要的理论基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
易鹏
吴国娟
段文焱
吴敏
潘波
关键词:  生物炭  老化  改性  结构变化  相互作用  环境效应    
Abstract: Biochar is a carbon-rich solid material produced by pyrolysis of biomass under anoxic or anaerobic conditions. As an advanced multi-functional material, biochar has shown potential application in the field of soil remediation, greenhouse gas emission reduction and pollution control, which have attracted wide research attention. Various techniques have been developed to modify biochar in order to enhance their adsorption performance by changing the physical and chemical properties of biochar.
However, when biochar enters the environment, the biological and abiotic processes can change its physical and chemical properties. As aging progresses, biochar is gradually degraded from surface to interior, the size of benzene ring is smaller, and the surface oxygen functional groups are increased. However, it is unknown how these modified biochars persist in the applied systems, let alone their potential environmental implications.
Studies have shown that increased oxidation degree and surface functional group of biochar enhance the adsorption capacity of biochar, promote the interaction of biochar with soil components, plant nutrients and pollutants, and thus reduce the environmental risk of pollutants. Other studies have also indicated that the specific surface area and pore volume of biochars are reduced after aging, resulting in their reduction of adsorption capacity. Meanwhile, aging and modification may reduce the stability of biochar in the environment, leading to the release of biochar components (dissolved organic matter and dissolved black carbon) and endogenous pollutants. Environmentally persistent free radicals (EPFRs) and short life free radicals produced by biochar can degrade organic pollutants by free radical pathway. Singlet oxygen (1O2) induced by biochar can also degrade organic pollutants in a non-free radical pathway.
This paper reviewed the research progress on the modification of biochar, the structural changes during their aging, the uncertainty of interaction between biochar and chemical substances, the interaction between biochar and soil components, and the environmental risks of the modified and the aged biochar. The aging of modified biochar and its environmental effects were analyzed. Finally, the prospects about stability, functional effects and environmental risks of biochar after being applied are proposed. It is emphasized that the dynamic changes of biochar properties should be fully considered during its use and management. The intensive study on the practical application of biochar will provide the necessary theoretical basis for the establishment of its technical management and evaluation.
Key words:  biochar    aging    modification    structural change    interaction    environmental effect
                    发布日期:  2020-01-03
ZTFLH:  X-1  
基金资助: 国家自然科学基金(41663013;41703121;41807377);云南省重点研发计划项目(2018BC004)
通讯作者:  panbocai@aliyun.com   
作者简介:  易鹏,2016年6月获得南华大学环境工程学士学位。现为昆明理工大学环境科学与工程学院博士研究生。目前在潘波教授的指导下进行生物炭环境效应的研究;潘波,昆明理工大学环境科学与工程学院院长、博士、教授、博士生导师。获北京大学环境地理学博士学位,美国麻省大学博士后。国家自然科学基金杰出青年基金获得者,国家“万人计划”科技领军人才。现任European Journal of Soil Science副主编,“全国工人先锋号”带头人,云南省土壤环境与生态安全省创新团队负责人,云南省土壤固碳与污染控制重点实验室主任,主要研究方向为有机碳更替与污染物行为的耦合与调控;持久性自由基的产生机制和环境效应。
引用本文:    
易鹏,吴国娟,段文焱,吴敏,潘波. 生物炭的改性和老化及环境效应的研究进展[J]. 材料导报, 2020, 34(3): 3037-3043.
YI Peng,WU Guojuan,DUAN Wenyan,WU Min,PAN Bo. Research Progress on Modification and Aging of Biochar and Its Environmental Implications. Materials Reports, 2020, 34(3): 3037-3043.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030080  或          http://www.mater-rep.com/CN/Y2020/V34/I3/3037
1 Zheng B X, Ding K, Yang X R, et al. Science of the Total Environment, 2019, 647, 1113.
2 Xu M, Wu J, Zhang X H, et al. Act Ecologica Sinica, 2018, 38(2), 393 (in Chinese).
徐敏, 伍钧, 张小洪, 等. 生态学报, 2018, 38(2), 393.
3 Cha J S, Park S H, Jung S C, et al. Journal of Industrial and Enginee-ring Chemistry, 2016, 40,1.
4 Wang B, Gao B, Fang J. Critical Reviews in Environmental Science & Technology, 2018, 47(22), 1.
5 Qian K Z, Kumar A, Zhang H L, et al. Renewable & Sustainable Energy Reviews, 2015, 42(1), 1055.
6 Xiong X N, Yu I K M, Cao L C, et al. Bioresource Technology, 2017, 246, 254.
7 Koltowski M, Charmas B, Skubiszewska-Zieba J, et al. Ecotoxicology and Environmental Safety, 2017, 136, 119.
8 Koltowski M, Hilber I, Bucheli T D, et al. Science of the Total Environment, 2016, 566, 1023.
9 Hamer U, Marschner B, Brodowski S, et al. Organic Geochemistry, 2004, 35(7), 823.
10 Kuzyakov Y, Subbotina I, Chen H Q, et al. Soil Biology and Biochemistry, 2009, 41(2), 210.
11 Rajapaksha A U, Chen S S, Tsang D C W, et al. Chemosphere, 2016, 148, 276.
12 Zhang C S, Liu L, Zhao M H, et al. Environmental Science and Pollution Research, 2018, 25(22), 21525.
13 Sizmur T, Fresno T, Akgul G, et al. Bioresource Technology, 2017, 246, 34.
14 Ding Z H, Hu X, Wan Y S, et al. Journal of Industrial and Engineering Chemistry, 2016, 33, 239.
15 Lim W C, Srinivasakannan C, Balasubramanian N. Journal of Analytical and Applied Pyrolysis, 2010, 88(2), 181.
16 Lin Y, Munroe P, Joseph S, et al. Chemosphere, 2012, 87(2), 151.
17 Li J H, Lv G H, Bai W B, et al. Desalination and Water Treatment, 2016, 57(10), 4681.
18 Cazetta A L, Vargas A M M, Nogami E M, et al. Chemical Engineering Journal, 2011, 174(1), 117.
19 Xue Y W, Gao B, Yao Y, et al. Chemical Engineering Journal, 2012, 200, 673.
20 Borchard N, Wolf A, Laabs V, et al. Soil Use and Management, 2012, 28(2), 177.
21 Shim T, Yoo J, Ryu C, et al. Bioresource Technology, 2015, 197, 85.
22 Zhang X, Zhang S H, Yang H P, et al. Bioenergy Research, 2013, 6(4), 1147.
23 Zhu L, Lei H W, Wang L, et al. Journal of Analytical and Applied Pyrolysis, 2015, 115, 149.
24 Lyu H H, Gao B, He F, et al. Environmental Pollution, 2018, 233, 54.
25 Michalekov-Richveisova B, Fristak V, Pipiska M, et al. Environ Science and Pollution Research, 2017, 24(1), 463.
26 Zhang X K, Wang H L, He L Z, et al. Environmental Science and Pollution Research, 2013, 20(12), 8472.
27 Gao R L, Tang M, Fu Q L, et al. Environmental Science, 2017, 38(1), 361.
高瑞丽, 唐茂, 付庆灵, 等. 环境科学, 2017, 38(1), 361.
28 Shang M R, Liu Y G, Liu S B, et al. RSC Advances, 2016, 6(88), 85202.
29 Liu T Z, Gao B, Fang J, et al. RSC Advances, 2016, 6(29), 24314.
30 Wang Y, Mei X Y, Duan Z Y, et al. Materials Review A:Review Papers, 2017, 31(10), 138.
王耀, 梅向阳, 段正洋, 等. 材料导报:综述篇, 2017, 31(10), 138.
31 Zhang M, Gao B, Yao Y, et al. Chemical Engineering Journal, 2012, 210, 26.
32 Zhang M, Gao B, Yao Y, et al. Science of the Total Environment, 2012, 435, 567.
33 Hao Z, Wang C H, Yan Z S, et al. Chemosphere, 2018, 211, 962.
34 Zhou X H, Liu Y C, Zhou J J, et al. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91, 457.
35 Zhang M, Gao B, Varnoosfaderani S, et al. Bioresource Technology, 2013, 130, 457.
36 Yao Y, Zhang Y, Gao B, et al. Environmental Science and Pollution Research, 2018, 25(26), 25659.
37 Inyang M, Gao B, Pullammanappallil P, et al. Bioresource Technology, 2010, 101(22), 8868.
38 Bird M I, Moyo C, Veenendaal E M, et al. Global Biogeochemical Cycles, 1999, 13(4), 923.
39 Braadbaart F, Poole I, van Brussel A A. Journal of Archaeological Science, 2009, 36(8), 1672.
40 Cheng C H, Lehmann J. Chemosphere, 2009, 75(8), 1021.
41 Cao T, Chen W F, Yang T X, et al. Bioresources, 2017, 12(3), 6366.
42 Fang Y, Singh B, Singh B P, et al. European Journal of Soil Science, 2014, 65(1), 60.
43 Hockaday W C, Grannas A M, Kim S, et al. Geochimica Et Cosmochimica Acta, 2007, 71(14), 3432.
44 Lu K P, Yang X, Shen J J, et al. Agriculture, Ecosystems & Environment, 2014, 191, 124.
45 Liu S, Xu W H, Liu Y G, et al. Science of the Total Environment, 2017, 592, 546.
46 Chen T, Zhou Z Y, Xu S, et al. Bioresource Technology, 2015, 190, 388.
47 Cui X Q, Fang S Y, Yao Y Q, et al. Science of the Total Environment, 2016, 562, 517.
48 Zhang F, Wang X, Yin D X, et al. Journal of Environmental Management, 2015, 153, 68.
49 Aran D, Antelo J, Fiol S, et al. Bioresource Technology, 2016, 212, 199.
50 Li H B, Dong X L, da Silva E B, et al. Chemosphere, 2017, 178, 466.
51 Gu J Q, Zhou W Q, Jiang B Q, et al. Chemosphere, 2016, 145, 431.
52 Chen J, Zhang D, Zhang H, et al. Science of the Total Environment, 2017, 579, 598.
53 Ren X H, Sun H W, Wang F, et al. Chemosphere, 2016, 144, 2257.
54 Fan S S, Tang J, Wang Y, et al. Journal of Molecular Liquids, 2016, 220, 432.
55 Trigo C, Spokas K A, Cox L, et al. Journal of Agricultural and Food Chemistry, 2014, 62(45), 10855.
56 Kupryianchyk D, Hale S, Zimmerman A R, et al. Chemosphere, 2016, 144, 879.
57 Zhang X K, Sarmah A K, Bolan N S, et al. Chemosphere, 2016, 142, 28.
58 Villacanas F, Pereira M F R, Orfao J J M, et al. Journal of Colloid and Interface Science, 2006, 293(1), 128.
59 Zhu D Q, Pignatello J J. Environmental Science & Technology, 2005, 39(7), 2033.
60 Fan Y, Wang B, Yuan S H, et al. Bioresource Technology, 2010, 101(19), 7661.
61 Sun K, Jin J, Keiluweit M, et al. Bioresource Technology, 2012, 118, 120.
62 Ahmad M, Rajapaksha A U, Lim J E, et al. Chemosphere, 2014, 99, 19.
63 Chen C P, Zhou W J, Lin D H. Bioresource Technology, 2015, 179, 359.
64 Shi K S, Xie Y, Qiu Y P. Ecotoxicology and Environmental Safety, 2015, 114, 102.
65 Fang G D, Liu C, Wang Y J, et al. Applied Catalysis B-Environmental, 2017, 214, 34.
66 Yang J, Pan B, Li H, et al. Environmental Science & Technology, 2016, 50(2), 694.
67 Jiang B, Dai D J, Yao Y Y, et al. Chemical Communications, 2016, 52(61), 9566.
68 Yin R L, Guo W Q, Wang H Z, et al. Chemical Engineering Journal, 2019, 357, 589.
69 Mia S, Dijkstra F A, Singh B. Plant and Soil, 2018, 424(1-2), 639.
70 Van De Voorde T F J, Bezemer T M, Van Groenigen J W, et al. Ecological Applications, 2014, 24(5), 1167.
71 Alozie N, Heaney N, Lin C X. Science of the Total Environment, 2018, 630, 1188.
72 Kookana R S. Australian Journal of Soil Research, 2010, 48(6-7), 627.
73 Yang Y N, Sheng G Y. Environmental Science & Technology, 2003, 37(16), 3635.
74 Chen Y, Liu Y X, Chen Z J, et al.Chinese Journal of Applied Ecology, 2018, 29(1), 314.
陈颖, 刘玉学, 陈重军, 等. 应用生态学报, 2018, 29(1), 314.
75 Koltowski M, Hilber I, Bucheli T D, et al. Chemical Engineering Journal, 2017, 310, 33.
76 Oleszczuk P, Josko I, Kusmierz M. Journal of Hazardous Materials, 2013, 260, 375.
77 Mia S, Dijkstra F A, Singh B. Advances in Agronomy, 2017, 141, 1.
78 Chen Q, Zheng J W, Xu J C, et al. Chemical Engineering Journal, 2019, 356, 341.
79 Chen Q, Zheng J W, Zheng L C, et al. Chemical Engineering Journal, 2018, 350, 1000.
80 Liao S H, Pan B, Li H, et al. Environmental Science & Technology, 2014, 48(15), 8581.
81 Zhang Y L, Cao M M, Wang J Y, et al. Journal of Shenyang Agricultural University, 2017, 48(4), 482.
张玉兰, 曹明明, 王俊宇, 等. 沈阳农业大学学报, 2017, 48(4), 482.
82 Shao H Y, Zhang E F, Wang X D, et al. Acta Scientiae Cirumstantiae, 2019, 39(2), 537.
邵慧芸, 张阿凤, 王旭东, 等. 环境科学学报, 2019, 39(2), 537.
83 Li J W, Gu K, Tang C S, et al. Journal of Zhejiang University (Engineering Science), 2018, 52(1), 192.
李金文, 顾凯, 唐朝生, 等. 浙江大学学报(工学版), 2018, 52(1), 192.
[1] 张帅, 张健. 冷冻干燥法制备有机蒙脱土及其改性沥青性能研究[J]. 材料导报, 2020, 34(4): 4037-4042.
[2] 刘荣, 马玉宏, 赵桂峰, 王康康. 老化-海蚀循环作用下高阻尼橡胶隔震支座橡胶材料性能劣化规律[J]. 材料导报, 2020, 34(4): 4166-4173.
[3] 宋国林, 张泽, 沈成柱, 范鑫, 谢俊伟, 唐国翌. 低温等离子体改性碳纳米管对再生沥青性能的影响[J]. 材料导报, 2020, 34(2): 2052-2057.
[4] 杜华川, 王延宁, 何苗苗, 林梓锋, 吕正宗. 有机缓凝剂对水泥改性乳化沥青胶浆的改善效果研究[J]. 材料导报, 2019, 33(Z2): 254-260.
[5] 赵可成, 陈宇, 黄考取. 基于核壳结构缓释剂和抗氧化剂的新型复合沥青抗老化剂研究[J]. 材料导报, 2019, 33(Z2): 261-266.
[6] 王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
[7] 肖忆楠, 乔岩欣, 李月明, 盛立远, 赖琛, 奚廷斐. 医用钛及钛合金表面改性技术的研究进展[J]. 材料导报, 2019, 33(Z2): 336-342.
[8] 陈建锋, 王方明, 钟史放, 胡明金, 张江涛, 王凯冬, 李小兵. 多巴胺表面改性CNTs制备微纳双重结构的Ni/CNTs@pDA超疏水复合镀层[J]. 材料导报, 2019, 33(Z2): 568-572.
[9] 柴凡超, 常树全, 王国辉, 姚初请, 戴耀东. 辐射改性对铅/铜高分子辐射屏蔽材料性能的影响[J]. 材料导报, 2019, 33(z1): 444-447.
[10] 关文学, 周键, 王三反, 李艳红. 等离子体技术接枝苯磺酸甜菜碱改性对离子交换膜电阻的影响[J]. 材料导报, 2019, 33(z1): 462-465.
[11] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[12] 秦小凤, 曹嘉真, 汪小莉, 张贤明, 吕晓书. 纳米零价铁优化体系及其在环境中的应用研究进展[J]. 材料导报, 2019, 33(9): 1550-1557.
[13] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[14] 王岚, 李冀, 桂婉妹. 表面活性剂对温拌胶粉改性沥青高低温性能的影响[J]. 材料导报, 2019, 33(6): 986-990.
[15] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed