Please wait a minute...
材料导报  2020, Vol. 34 Issue (2): 2052-2057    https://doi.org/10.11896/cldb.19020125
  无机非金属及其复合材料 |
低温等离子体改性碳纳米管对再生沥青性能的影响
宋国林1, 张泽2, 沈成柱1, 范鑫2, 谢俊伟1, 唐国翌1
1 清华大学深圳国际研究生院,深圳 518055
2 深圳大学材料学院,深圳 518060
Effect of Low Temperature Plasma Modified-carbon Nanotubes on Performance of Recycled Asphalt
SONG Guolin1, ZHANG Ze2, SHEN Chengzhu1, FAN Xin2, XIE Junwei1, TANG Guoyi1
1 Tsinghua Shenzhen International Graduate School,Shenzhen 518055,China
2 College of Materials Science and Engineering,Shenzhen University,Shenzhen 518060,China
下载:  全 文 ( PDF ) ( 3619KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究工作利用低温等离子体处理多壁碳纳米管(MWNTs),设计开发了低温等离子体改性MWNTs复合再生剂,并以此对老化沥青进行再生处理。通过XPS和SEM对低温等离子体改性MWNTs的化学成分和分散性及其与基体的相容性进行分析,探讨了低温等离子体改性MWNTs的作用机制。利用FTIR和TG对再生沥青胶结料的组分、热稳定性和耐老化性进行研究。最后采用针入度、软化点、延度测试对沥青再生效果及综合性能进行了评估。结果表明:低温等离子体改性MWNTs能够在其表面引入大量的含氧官能团,有效解决了MWNTs与基质沥青存在的界面问题,提高了MWNTs的分散性及MWNTs与沥青基体的结合力,使再生沥青的力学性能大幅提高。同时,MWNTs能够吸附再生剂中的部分油分,起到缓释作用,较好地克服了传统再生剂由于油分快速流失所导致的胶结料迅速老化的问题。因此,该技术在提高再生胶结料综合性能的同时也有效地改善了其抗老化性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋国林
张泽
沈成柱
范鑫
谢俊伟
唐国翌
关键词:  碳纳米管  沥青再生  低温等离子体  改性处理  性能    
Abstract: Low temperature plasma was used to modify multi-walled carbon nanotubes (MWNTs), and the recycling agent composed with such plasma-modified-MWNTs was prepared and introduced into the aged asphalts for their juvenescence. The chemical composition of low temperature plasma modified-MWNTs and its dispersibility and compatibility with asphalt matrix was characterized by using XPS and SEM, while the modification mechanism of low temperature plasma modified-MWNTs was also discussed. FTIR and TG were employed to exam the components, thermal stabilities and aging resistances of recycled asphalts. Finally, the effects of regeneration and performances of recycled asphalts were evaluated via the penetration, softening point and ductility indexes tests. The results indicate that low temperature plasma treatment could solve the interface problem of MWNTs while introduce a large number of oxygen-containing functional groups on the surface, which improves the dispersion of MWNTs and the binding between MWNTs and asphalt matrix. Therefore, the mechanical properties of recycled asphalt are greatly improved. At the same time, MWNTs can absorb part of the oil in the recycling agent and play a sustained-release role, which better overcomes the problem that asphalt ages at a high rate due to the rapid loss of oil within the traditional recycling agent. Therefore, it can effectively improve the anti-aging performance while improving the comprehensive performance of recycled asphalt.
Key words:  carbon nanotubes    asphalt regeneration    low temperature plasma    modification treatment    performance
               出版日期:  2020-01-25      发布日期:  2020-01-03
ZTFLH:  U416  
基金资助: 深圳市科技计划技术开发项目(JSKF20150831193118543);深圳市科技计划基础研究项目(JCYJ20160331185322137;JCYJ20180306174102763);清华大学深圳研究生院交叉学科创新基金(JC2017002)
通讯作者:  song.guolin@sz.tsinghua.edu.cn   
作者简介:  宋国林,清华大学深圳研究生院,新材料研究所,副教授。2006年11月毕业于英国利兹大学色彩科学与高分子化学系获得博士研究生学位。2006年10月至2008年4月就职于英国数码印刷工业合作中心。2008年5月回国进入清华大学开展博士后研究工作,2010年博士后出站留校,在清华大学深圳研究生院新材料研究所工作至今。近年来,结合我国新材料产业发展需求,主要开展了低温等离子制备与改性技术、MOFs制备、相变储能导热强化及多功能化技术、金属材料外场加工及表面强化技术、轻金属复合结构及材料制备技术、生物质资源再生利用、绿色可生物降解材料、高效驻极过滤技术、无卤阻燃技术的研发及产业化应用研究工作。主持参与承担了科技部国际合作项目、自然科学基金重点项目、广东省、深圳市科技计划等项目30余项。在国内外学术期刊上发表论文50余篇,并担任多个国外学术期刊的审稿人;申请专利40余项,其中授权国家发明专利26项。获中国机械工业科学技术二等奖1项;深圳市自然科学一等奖及深圳市科技进步二等奖各1项。现为深圳市领军人才和孔雀计划海外高层次人才。
引用本文:    
宋国林, 张泽, 沈成柱, 范鑫, 谢俊伟, 唐国翌. 低温等离子体改性碳纳米管对再生沥青性能的影响[J]. 材料导报, 2020, 34(2): 2052-2057.
SONG Guolin, ZHANG Ze, SHEN Chengzhu, FAN Xin, XIE Junwei, TANG Guoyi. Effect of Low Temperature Plasma Modified-carbon Nanotubes on Performance of Recycled Asphalt. Materials Reports, 2020, 34(2): 2052-2057.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19020125  或          http://www.mater-rep.com/CN/Y2020/V34/I2/2052
1 Zhang D Y.Development and performance research of asphalt recycling agent.Ph.D. Thesis, Southeast China University,China,2009(in Chineses).张道义. 沥青再生剂开发与性能研究.博士学位论文,东南大学, 2009.2 Qi Y T,Wang M G, Chen B, et al. Journal of Liaoning University of Petroleum and Chemical Technology, 1993(3),17(in Chinese).亓玉台, 王明刚, 陈斌,等. 辽宁石油化工大学学报, 1993(3),17.3 Buongiorno Nardelli M, Brabec C, Maiti A, et al. Physical Review Letters, 1998, 80(2),313.4 Sun L, Yu W Y, Zhang C P. Forest Engineering, 2011(5),65(in Chinese).孙凌, 于文勇, 张春平. 森林工程, 2011(5),65.5 Zhu K, Shang Y Y, Sun P Z, et al. Frontiers of Materials Science, 2013, 7(2),170.6 Li G Y. Wang P M. Journal of the Chinese Ceramic Society, 2005, 33(1),105(in Chinese).李庚英, 王培铭. 硅酸盐学报, 2005, 33(1),105.7 Fan L,Zhang Y Z,Liu Y J,et al. Materials Review A: Review Papers, 2010, 24(12),72(in Chinese).樊亮, 张玉贞, 刘延军, 等. 材料导报:综述篇, 2010, 24(12),72.8 Jahromi S G, Khodaii A. Construction and Building Materials, 2009, 23(8),2894.9 Khattak M J, Khattab A, Rizvi H R, et al. Construction & Building Materials, 2012, 30,257.10 Gong M, Yang J, Yao H, et al. Road Materials & Pavement Design, 2017(5),1.11 Qian D, Dickey E C, Andrews R, et al. Applied Physics Letters, 2000, 76(20),2868.12 Lin X J.Low temperature plasma modification of carbon nanotubes and ini-tiation of styrene graft copolymerization.Ph.D. Thesis, Tianjin University, China,2010(in Chinese).林小静. 碳纳米管的低温等离子体改性及其引发苯乙烯接枝共聚,博士学位论文. 天津大学, 201013 Arpagaus C, Rossi A, Rohr P R V. Applied Surface Science, 2005, 252(5),1581.14 Ibrahim N A, Eid B M, Abdel-Aziz M S. Applied Surface Science, 2017, 392,1126.15 Chen I H, Wang C C, Chen C Y. Plasma Processes & Polymers, 2010, 7(1),59.16 Shen C Z, Song G L, Tang G Y. Surface and Coatings Technology, 2018, 354, 126.17 Wang H, Li L F,Zhang H,et al. Acta Materiae Compositae Sinica, 2007, 24(3),121(in Chinese).王宏, 李来风, 张浩,等. 复合材料学报, 2007, 24(3),121.18 Yang X, Mills-Beale J, You Z. Journal of Cleaner Production, 2017, 142,1837.19 Lamontagne J, Dumas P, Mouillet V, et al. Fuel, 2001, 80(4),483.20 Xu C.Study on the performance and structure of modified asphalt based on carbon nanotubes.Ph.D. Thesis, Chongqing Jiaotong University, China,2015(in Chinese).许晨. 基于碳纳米管改性沥青的结构和性能的研究.博士学位论文, 重庆交通大学, 2015.
[1] 李红,邢增程,Erika Hodúlová,胡安明,Wolfgang Tillmann. 退火处理工艺在纳米多层膜材料研究中的应用进展[J]. 材料导报, 2020, 34(3): 3099-3105.
[2] 孙杨,乔国富. 锈蚀钢筋与混凝土粘结性能研究综述[J]. 材料导报, 2020, 34(3): 3116-3125.
[3] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[4] 刘轩之,顾开选 ,翁泽钜,王凯凯,崔晨,郭嘉,王俊杰. 铝合金深冷处理研究进展[J]. 材料导报, 2020, 34(3): 3172-3177.
[5] 曹颐戬,王聪,王丽琴. 仿生超疏水材料及其在文物保护中的应用综述[J]. 材料导报, 2020, 34(3): 3178-3184.
[6] 贾卫平, 吴蒙华, 贾振元, 董桂馥, 李晓鹏, 周绍安. 超声功率对多场耦合作用下脉冲电沉积Ni-ZrO2纳米复合镀层性能的影响[J]. 材料导报, 2020, 34(2): 2017-2022.
[7] 王文权, 李雅倩, 李欣, 刘亮, 陈飞. 选区激光熔化制备Ni-Cr-B-Si合金粉末的微观组织与性能[J]. 材料导报, 2020, 34(2): 2077-2082.
[8] 瞿猛, 唐建国, 叶凌英, 李承波, 李建湘, 周旺, 邓运来. 过时效与添加Zr对Al-Zn-Mg合金耐腐蚀性能影响的对比[J]. 材料导报, 2020, 34(2): 2083-2087.
[9] 李焕焕, 张东东, 许子昂, 董瑶, 赵义平, 陈莉. 荧光碳点改性无纺布的制备及在汞(Ⅱ)检测中的应用[J]. 材料导报, 2020, 34(2): 2163-2168.
[10] 张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
[11] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[12] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[13] 王惠芬, 刘刚, 曹康丽, 杨碧琦, 徐骏, 兰少飞, 张丽新. 碳纳米管材料在航天器上的应用研究现状及展望[J]. 材料导报, 2019, 33(z1): 78-83.
[14] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[15] 春风, 特古斯, Tsogbadrakh N, Sangaa D. Mg1-xCaxFe2O4化合物的结构、磁性及交变磁场中的发热性能[J]. 材料导报, 2019, 33(z1): 122-125.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[4] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[5] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[6] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[7] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[8] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[9] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[10] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed