Please wait a minute...
材料导报  2020, Vol. 34 Issue (4): 4007-4012    https://doi.org/10.11896/cldb.19010215
  无机非金属及其复合材料 |
蒲公英基三维分级多孔炭的制备及电化学性能
孙宏宇, 高静怡, 潘超
大连海洋大学理学院,大连 116023
Preparation and Electrochemical Properties of Dandelion-based Three-dimensional Hierarchical Porous Carbon
SUN Hongyu, GAO Jingyi, PAN Chao
College of Science, Dalian Ocean University, Dalian 116023, China
下载:  全 文 ( PDF ) ( 5211KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 以大连地区采集的新鲜蒲公英冠毛为碳源,通过清洗、活化、炭化过程制备了新颖的相互连通的三维分级多孔结构活性炭。采用热重分析仪、X射线衍射(XRD)仪、扫描电子显微镜(SEM)、拉曼光谱仪和电化学工作站对其物理性质、微观结构和电化学性能进行了表征,研究了活化温度和活化剂配比对炭电极电化学性能的影响。结果表明,活化温度为800 ℃、活化剂配比为2∶1的炭电极性能最优,5 A/g电流密度下电极的比电容为163 F/g,循环10 000次电容无衰减,表现出极佳的稳定性。这可归因于其独特的三维互通的多孔网络结构,这种结构有利于电解液进入活性炭的内部空间,从而最大程度地增大了材料与电解液的接触面积,增大了双电层储存电荷密度,进而提升了活性炭的电化学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙宏宇
高静怡
潘超
关键词:  蒲公英  多孔炭  分级结构  超级电容器  电化学性能    
Abstract: Anovel three-dimensional hierarchical porous carbon material was in the process of cleaning, activating and carbonizating of fresh dandelion pappus collected in Dalian area. Their physical properties, microstructures and electrochemcial properties were characterized by thermogravimetric analyzer, X-ray diffraction(XRD) analyzer, scanning electron microscope(SEM), Raman spectrometer and electrochemical workstation. The effects of activation temperature and ratio of activator on the electrochemical properties of carbon materials were studied. As the result, the activated carbon electrode had the best performance at 800 ℃ and 2∶1 ratio of activator, the specific capacitance of the electrode was 163 F/g at a current density of 5 A/g with no capacitance loss after 10 000 cycles, showing excellent stability. This could be attributed to its unique three-dimensional interoperable porous network architecture, which was conducive to the electrolyte into the internal space of activated carbon, thereby maximizing the contact area between the material and the electrolyte, which increased the charge density of double-layer storage and improved the electrochemical performance of activated carbon.
Key words:  dandelion    porous carbon    hierarchical structure    supercapacitor    electrochemical performance
               出版日期:  2020-02-25      发布日期:  2020-01-15
ZTFLH:  O646.54  
基金资助: 辽宁省自然科学基金(2019-ZD-0734);辽宁省教育厅基金(L201617);辽宁省海洋与渔业厅基金(201726);大连海洋大学“湛蓝 学者”基金
通讯作者:  panchao@dlou.edu.cn   
作者简介:  孙宏宇,大连海洋大学,硕士研究生,主要从事生物材料加工和电化学储能领域的研究;潘超,大连海洋大学,教授。2007年7月毕业于东南大学,生物医学工程博士专业学位。同年加入大连海洋大学工作至今,主要从事一维纳米材料和高性能碳材料在能源和环境领域的应用。
引用本文:    
孙宏宇, 高静怡, 潘超. 蒲公英基三维分级多孔炭的制备及电化学性能[J]. 材料导报, 2020, 34(4): 4007-4012.
SUN Hongyu, GAO Jingyi, PAN Chao. Preparation and Electrochemical Properties of Dandelion-based Three-dimensional Hierarchical Porous Carbon. Materials Reports, 2020, 34(4): 4007-4012.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010215  或          http://www.mater-rep.com/CN/Y2020/V34/I4/4007
1 Fan Z. Preparation and capacitance properties of electrode materials for electrochemical capacitors. Ph.D. Thesis, Hunan University, China, 2008(in Chinese).
樊桢. 电化学电容器电极材料的制备及其电容性能研究. 博士学位论文, 湖南大学, 2008.
2 Meng Q F, Cai K F, Chen Y X, et al. Nano Energy, 2017, 36, 268.
3 Morimoto T, Hiratsuka K, Sanada Y. Materials Research Society Sympo-sium Proceedings, 1995, 393, 397.
4 Li T T, Zhao J K, Li Y, et al. Acta Chimica Sinica, 2017, 75, 485.
5 Han Y, Dong X T, Zhang C, et al. Journal of Power Sources, 2013, 227, 118.
6 Li H, Yuan D, Tang C H, et al.Carbon, 2016, 100, 151.
7 Qie L, Chen W M, Xu H H, et al. Energy & Environmental Science, 2013, 6, 2497.
8 Fenoradosoa T A, AliCedric G, Celine D, et al. Journal of Applied Hycology, 2010, 22(2), 131.
9 Bichat M, Raymundo-Pinero E,Béguin F. Carbon, 2010, 48(15), 4351.
10 Zhang L, Zhang F, Yang X, et al. Small, 2013, 9(8), 1342.
11 Fan Y, Yang X, Zhu B, et al. Journal of Power Sources, 2014, 268(3), 584.
12 Délery J. Three-dimensional separated flows topology: singular points, beam splitters and vortex structures, John Wiley & Sons, US, 2013.
13 Cummins C, Seale M, Macente A, et al. Nature, 2018, 562(7727), 414.
14 Zhao J, Gong J W, Li Y J, et al. Acta Chimica Sinica, 2018, 76(2), 107.
15 Pan C, Sun H Y, Gao J Y, et al. Nanoscience and Nanotechnology Letters, 2018, 10(3), 358.
16 Hu M, Reboul J, Furukawa S, et al. Journal of the American Chemical Society, 2012, 134, 2864.
17 Yu B J, Zhang Y, Chang Z Z, et al. Carbon, 2015(3), 3(in Chinese).
于宝军, 张洋, 常珍珍, 等.炭素, 2015(3),3.
18 Zhang Y, Wang L Z, Zhang A Q, et al. Electronic Components & Mate-rials, 2010, 29(8), 39(in Chinese).
张勇, 王力臻, 张爱勤, 等.电子元件与材料, 2010, 29(8), 39.
19 Li C, Zhang Y Z, Lin C H, et al. Journal of Materials Chemistry A, 2014, 2, 9684.
20 Ferrari A, Robertson C. Physical Review B, 2000, 61, 14095.
21 Ai K, Liu Y, Ruan C, et al. Advanced Materials, 2013, 25(7), 998.
22 Zong F X, Pan C, Gao J Y, et al. Hans Journal of Nanotechnology, 2017, 7(1), 11(in Chinese).
宗飞旭, 潘超, 高静怡, 等. 纳米技术, 2017, 7(1), 11.
[1] 钏定泽, 颜廷亭, 刘金坤, 刘继涛, 陈希亮, 陈庆华. 羟基磷灰石晶体仿生阵列的制备研究进展[J]. 材料导报, 2020, 34(9): 9069-9074.
[2] 徐枫, 严红革, 陈吉华, 张正富, 范长岭. 原料对强化固相反应合成的LiNi1/3Co1/3Mn1/3O2粉末电化学性能的影响[J]. 材料导报, 2020, 34(6): 6039-6043.
[3] 高国梁, 张海涛, 李晨斌, 王德宇, 沈彩. 共价有机聚合物/石墨烯复合材料的制备及锂电性能研究[J]. 材料导报, 2020, 34(6): 6161-6165.
[4] 王桂玲, 杜梦宇, 马陈超, 牛星雨, 张卫民, 王欣昱. 超薄二氧化锰@碳纳米球复合材料的制备及电容特性[J]. 材料导报, 2020, 34(16): 16016-16019.
[5] 邓安强, 罗永春, 王浩, 赵磊, 郑坤. 新型无镁YNi3.5-xAlx(x=0~0.3)储氢合金的结构和电化学性能[J]. 材料导报, 2020, 34(14): 14110-14115.
[6] 张文林, 冉奋. 具有高比电容的蘑菇衍生碳材料[J]. 材料导报, 2020, 34(12): 12010-12014.
[7] 任瑞丽, 王会才, 高丰, 岳瑞瑞, 汪振文. 石墨烯基柔性超级电容器复合电极材料的研究进展[J]. 材料导报, 2020, 34(11): 11099-11105.
[8] 李寒, 孙志鹏, 贾殿赠. 柔性钛箔上生长的自支撑TiO2@NiCo2S4阵列复合材料用作高性能非对称超级电容器电极[J]. 材料导报, 2020, 34(1): 1187-1194.
[9] 孔令宇, 黄慧娟, 杨喜, 马建锋, 尚莉莉, 刘杏娥. 生物质基炭气凝胶复合材料在超级电容器中应用的研究进展[J]. 材料导报, 2019, 33(Z2): 32-37.
[10] 周勇, 赵飞, 高倩, 孙良, 董会, 翟文彦. Sn含量对Al-Zn合金组织与溶解性能的影响[J]. 材料导报, 2019, 33(Z2): 406-409.
[11] 张涛, 孙友谊, 刘亚青. 静电纺丝法制备壳聚糖/聚乙烯醇基复合碳纳米纤维及其电化学性能[J]. 材料导报, 2019, 33(Z2): 516-520.
[12] 姚进, 毛龙, 刘小超, 李知函. 利用分级结构层状黏土构建高阻隔性脂肪族聚酯复合材料[J]. 材料导报, 2019, 33(Z2): 617-622.
[13] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[14] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[15] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed