Please wait a minute...
材料导报  2020, Vol. 34 Issue (11): 11099-11105    https://doi.org/10.11896/cldb.19050178
  无机非金属及其复合材料 |
石墨烯基柔性超级电容器复合电极材料的研究进展
任瑞丽, 王会才, 高丰, 岳瑞瑞, 汪振文
天津工业大学化学与化学工程学院, 天津 300387
Research Progress of Graphene-based Flexible Supercapacitor Composite Electrode Materials
REN Ruili, WANG Huicai, GAO Feng, YUE Ruirui, WANG Zhenwen
School of Chemistry and Chemistry Engineering, Tianjin Polytechnic University, Tianjin 300387, China
下载:  全 文 ( PDF ) ( 3783KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,便携式和可穿戴电子设备呈现出跨越式发展,为了使可穿戴电子器件更加灵活、轻巧、智能并完全实现产品化,就需进一步探求与之匹配的具有薄、轻、柔特点的储能装置。超级电容器由于具有功率密度高、循环寿命长、机械强度高、安全性好和易于组装等优点,受到研究者的广泛关注。然而,传统的超级电容器一旦受到外力发生变形,储能特性会极大降低甚至丧失。电极材料是电容器的核心部分,因此研制出高柔韧性和储能特性出众的电极材料是有必要的。石墨烯因具有大比表面积,优异的力学、电学性能而成为用于柔性超级电容器的有吸引力的电极材料。赝电容材料可提供高比电容,但其导电性差、稳定性低,因此研究者将石墨烯与赝电容材料相融合作为电极材料,充分发挥各自优势,不仅克服了石墨烯片层间易团聚的缺点,还可提高柔性超级电容器的整体能量密度。
   由于二维石墨烯片层易堆叠,电子传导能力受到限制,目前更多的研究工作致力于三维多孔网状结构的石墨烯材料。本文突出介绍了石墨烯的两个重要角色:(1)与电化学活性物质复合作为活性材料;(2)作为沉积活性物质的导电柔性基体。因此,功能多样化的石墨烯在制备柔性电极中有很大的潜力。通过化学沉积、浸涂、水热等工艺将具有高电导率的石墨烯直接作为柔性基底,或与赝电容材料键合附着在柔性基体上,制备基于石墨烯的柔性电极材料。
   本文介绍了超级电容器的储能原理和石墨烯在柔性超级电容器领域的应用状况,着重总结了石墨烯/过渡金属氧化物、石墨烯/导电聚合物复合电极材料在柔性超级电容器方面的研究进展;解析了柔性超级电容器电极材料仍然面临的挑战,并对其未来的发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任瑞丽
王会才
高丰
岳瑞瑞
汪振文
关键词:  石墨烯  复合电极材料  柔性超级电容器  过渡金属氧化物  导电聚合物    
Abstract: In recent years, portable and wearable electronic devices have developed by leaps and bounds. In order to make wearable electronic devices more flexible, lightweight, intelligent and fully productized, it is necessary to further explore the matching of thin, light and flexible energy storage. Supercapacitors have attracted wide attention from researchers due to their high power density, long cycle life, high mechanical strength, high safety and ease of assembly. However, once the traditional supercapacitor is deformed by external force, the energy storage characteristics will be greatly reduced or even lost.The electrode material is the core of the capacitor, so it is necessary to develop an electrode material with high flexibility and superior energy storage characteristics. Graphene has a large specific surface area, excellent mechanical and electrical properties and has become an attractive electrode material for flexible supercapacitors. Pseudocapacitance materials can provide high specific capacitance, but have the poor conductivity and low stability. Researchers will use graphene and pseudocapacitance materials are used as electrode materials to fully utilize their respective advantages, which not only overcomes the shortcomings of easy agglomeration between graphene sheets, but also improves the overall energy density of flexible supercapacitors.
Since the two-dimensional graphene sheets are easy to stack and the electron conductivity is limited, more research work is currently devoted to the three-dimensional porous network structure of graphene materials. This paper highlights two important roles of graphene:(1) composite with electrochemically active materials as active materials; (2) as the conductive and flexible substrate for depositing active materials, so functionally diverse graphene has great potential in the preparation of flexible electrodes. Graphene with high conductivity was directly used as a flexible substrate by chemical deposition, dip coating, hydrothermal and other processes, or it was bonded with pseudocapacitance material and attached to the flexible matrix to prepare graphene-based flexible electrode materials.
This paper introduces the energy storage principle of supercapacitors and the application of graphene in flexible supercapacitors, and summarizes the research progress of graphene/transition metal oxide and graphene/conductive polymer composite electrode materials in flexible supercapacitors; flexible supercapacitor electrode materials still face challenges and prospects for future development.
Key words:  graphene    composite electrode materials    flexible supercapacitor    transition metal oxide    conductive polymer
                    发布日期:  2020-05-13
ZTFLH:  TB33  
通讯作者:  wanghc@nankai.edu.cn   
作者简介:  任瑞丽,2018年6月毕业于河南城建学院,获得工学学士学位。现为天津工业大学化学与化学工程学院硕士研究生,在王会才副教授的指导下进行研究。目前主要研究领域为电化学。
王会才,天津工业大学化学与化工学院副教授、硕士研究生导师。2001年7月本科毕业于长春工程学院,2007年9月在浙江大学高分子化学与物理专业取得博士学位,2007—2010年在南开大学进行博士后研究工作,2013年入选天津市“131”创新型人才培养工程第三层次,并入选天津市高校“优秀青年教师资助计划”, 2017年入选天津市高校“中青年骨干创新人才培养计划”,2017—2018年在牛津大学访问。主要从事功能材料及其在电化学检测、新能源材料以及环境领域中的应用研究工作。近年来,发表论文30余篇,授权发明专利6项,包括Biosensor & Bioelectronics、Sensors and Actuators B: Chemical、Talanta、Electrochi-mica Acta、Chemical Engineering Journal等。
引用本文:    
任瑞丽, 王会才, 高丰, 岳瑞瑞, 汪振文. 石墨烯基柔性超级电容器复合电极材料的研究进展[J]. 材料导报, 2020, 34(11): 11099-11105.
REN Ruili, WANG Huicai, GAO Feng, YUE Ruirui, WANG Zhenwen. Research Progress of Graphene-based Flexible Supercapacitor Composite Electrode Materials. Materials Reports, 2020, 34(11): 11099-11105.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050178  或          http://www.mater-rep.com/CN/Y2020/V34/I11/11099
1 Zhang Y Z, Wang Y, Cheng T, et al. Chemical Society Reviews, 2015, 44(15), 5181.
2 Wu Z, Li L, Yan J M, et al. Advanced Science, DOI:10.1002/advs.201600382.
3 Chen G Z.International Materials Reviews, 2016, 62(4), 173.
4 Zuo W, Li R, Zhou C, et al. Advanced Science, DOI:10.1002/advs.201600539.
5 Moosavifard S E,E-Kady M F, et al. ACS Applied Materials & Interfaces, 2015, 7 (8), 4851.
6 Wang G, Zhang L, Zhang J.Chemical Society Reviews, 2012, 41(2), 797.
7 Dubal D P, Chodankar N R, Kim D H, et al. Chemical Society Reviews, 2018, 47(6), 2065.
8 Lv Z, Luo Y, Tang Y, et al.Advanced Materials, DOI:10.1002/adma.201704531.
9 Huang Y, Liang J, Chen Y.Small, 2012, 8(12), 1805.
10 Wang B, Hu C, Dai L. Chemical Communications, 2016, 52(100), 14350.
11 Xing J, Tao P, Wu Z, et al.Carbohydrate Polymers, 2019, 207, 447.
12 Borenstein A, Hanna O, Attias R, et al. Journal of Materials Chemistry A, 2017, 5(25), 12653.
13 González A, Goikolea E, Barrena J A, et al.Renewable and Sustainable Energy Reviews, 2016, 58, 1189.
14 Lin J Y, Huang J J, Hsueh Y L, et al. Applied Surface Science, 2019, 477, 257.
15 Salunkhe R R, Lin J, Malgras V, et al.Nano Energy, 2015, 11, 211.
16 Cakici M, Kakarla R R, Alonso-Marroquin F.Chemical Engineering Journal, 2017, 309, 151.
17 Chee W K, Lim H N, Zainal Z, et al.The Journal of Physical Chemistry C, 2016, 120(8), 4153.
18 Kate R S, Khalate S A, Deokate R J.Journal of Alloys and Compounds, 2018, 734, 89.
19 Li W W, Lu H, Zhang N, et al. ACS Applied Mateials & Interfaces, 2017, 9(23), 20142.
20 Augustyn V, Simon P, Dunn B. Energy & Environmental Science, 2014, 7(5),1597.
21 Hu X, Zhang W, Liu X, et al.Chemical Society Reviews, 2015, 44(8), 2376.
22 Zhong Y, Zhen Z, Zhu H.FlatChem, 2017, 4, 20.
23 Singh V, Joung D, Zhai L, et al.Progress in Materials Science, 2011, 56(8), 1178.
24 Nair R R B P, Grigorenko A N.Science China Materials, 2008, 320(5881), 1308.
25 Kim K S, Zhao Y, Jang H, et al.Nature, 2009, 457(7230), 706.
26 Lee C G, Wei X D,Kysar J W.Science China Materials, 2008, 321(5887), 385.
27 Zhu Y, Huang H, Zhou W, et al.Journal of Materials Science: Materials in Electronics, 2017, 28(14), 10098.
28 Yu X, Park H S. Carbon, 2014, 77, 59.
29 Li S M, Yang S Y, Wang Y S, et al. Journal of Power Sources, 2015, 278, 218.
30 Yu X, Kang Y, Park H S. Carbon, 2016, 101, 49.
31 Xu Y, Chen C Y, Zhao Z, et al. Nano Letters, 2015, 15(7), 4605.
32 Yue S, Tong H, Gao Z, et al.Journal of Solid State Electrochemistry, 2017, 21(6), 1653.
33 Jin H, Bu Y, Li J, et al.Advanced Materials, DOI:10.1002/adma.201707424.
34 Wang D, Fang G, Zheng Q, et al.Journal of Solid State Electrochemistry, 2016, 21(2), 563.
35 Wang W, Guo S, Penchev M, et al.Nano Energy, 2013, 2(2), 294.
36 Zhang X, Zhang H, Lin Z, et al.Science China Materials, 2016, 59(6), 475.
37 Meng X, Lu L, Sun C.ACS Applied Materials & Interfaces, 2018, 10(19), 16474.
38 He Y M, Chen W J, Li X D, et al.ACS Nano, 2013, 7 (1), 174.
39 Li Z Q, Tian M W,Sun X T, et al.Journal of Alloys and Compounds, 2019, 782, 986.
40 Oueiny C, Berlioz S, Perrin F X. Progress in Polymer Science, 2014, 39(4), 707.
41 Cong H P, Ren X C, Wang P, et al. Energy & Environmental Science, 2013, 6(4),1185.
42 Yu P, Zhao X, Li Y, et al. Applied Surface Science, 2017, 393, 37.
43 Yu J, Xie F, Wu Z, et al.Electrochimica Acta, 2018, 259, 968.
44 Zhao Y, Liu J, Hu Y, et al. Advanced Materials, 2013, 25(4), 591.
45 Ma L, Liu R, Niu H, et al.Electrochimica Acta, 2016, 222, 429.
46 Chen L, Chen L, Ai Q, et al.Chemical Engineering Journal, 2018, 334, 184.
47 Ren J, Ren R P, Lu Y K, et al.Chemical Engineering Journal, 2018, 349, 111.
48 Moussa M, El-Kady M F, Abdel-Azeim S, et al.Composites Science and Technology, 2018, 160, 50.
49 Li Y, Sheng K, Yuan W, et al.Chemical Communications, 2013, 49(3), 291.
50 Zhi J, Zhao W, Liu X, et al.Advanced Functional Materials, 2014, 24(14), 2013.
51 Ramadoss A, Yoon K Y, Kwak M J, et al.Journal of Power Sources, 2017, 337, 159.
52 Song N, Wu Y, Wang W, et al.Materials Research Bulletin, 2019, 111, 267.
[1] 仪登豪, 冯英豪, 张锦芳, 李晓峰, 刘斌, 梁敏洁, 白培康. 3D打印石墨烯增强复合材料研究进展[J]. 材料导报, 2020, 34(9): 9086-9094.
[2] 程正富, 周明军, 杨邦朝, 郑瑞伦. 石墨烯热学性能非简谐效应的研究进展[J]. 材料导报, 2020, 34(9): 9095-9100.
[3] 刘宇程, 祝梦, 陈明燕, 涂雯雯, 甘冬. 氧化石墨烯/金属有机框架材料复合膜在有机废水处理中的研究进展[J]. 材料导报, 2020, 34(7): 7003-7009.
[4] 曹新鑫, 李福昌. 石墨烯气凝胶的废水吸附性能研究进展[J]. 材料导报, 2020, 34(7): 7020-7025.
[5] 王延伟, 卢维尔, 闫美菊, 夏洋. 化学气相沉积技术制备亚厘米尺寸单晶石墨烯的工艺研究[J]. 材料导报, 2020, 34(6): 6001-6005.
[6] 许壮, 高召顺, 韩立, 左婷婷, 伍岳, 肖立业, 孔祥东. 电子束热处理快速制备石墨烯技术[J]. 材料导报, 2020, 34(6): 6006-6009.
[7] 袁小亚, 彭一豪, 孙立涛, 郑旭煦, 秦泽海. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6): 6075-6080.
[8] 高国梁, 张海涛, 李晨斌, 王德宇, 沈彩. 共价有机聚合物/石墨烯复合材料的制备及锂电性能研究[J]. 材料导报, 2020, 34(6): 6161-6165.
[9] 任静, 李秀艳, 辛王鹏, 周国伟. Bi2WO6/石墨烯复合材料的制备与光催化应用研究进展[J]. 材料导报, 2020, 34(5): 5001-5007.
[10] 何延如, 田小让, 赵冠超, 代玲玲, 聂革, 刘敏胜. 石墨烯薄膜的制备方法及应用研究进展[J]. 材料导报, 2020, 34(5): 5048-5060.
[11] 朱广彬, 边志成, 何雨林, 李前进, 郭路路, 罗志虹, 罗鲲. 铁/氮共掺杂石墨烯的制备及氧还原催化活性[J]. 材料导报, 2020, 34(2): 2010-2016.
[12] 吴永健, 唐仁衡, 欧阳柳章, 李文超, 王英, 黄玲. 分散剂对油性石墨烯导电浆料性能的影响及其在锂电池中的应用[J]. 材料导报, 2020, 34(12): 12030-12035.
[13] 朱武青, 全海燕, 彭叔森, 张敏, 陈东初, 户华文. 基于天然贻贝仿生制备聚多巴胺改性石墨烯基功能材料及其水体环境修复应用研究进展[J]. 材料导报, 2020, 34(11): 11009-11021.
[14] 任秦博,王景平,杨立,李翔,王学川. 用于电阻式柔性应变传感器的导电聚合物复合材料研究进展[J]. 材料导报, 2020, 34(1): 1080-1094.
[15] 高久伟,卢乾波,郑璐,王学文,黄维. 柔性生物电传感技术[J]. 材料导报, 2020, 34(1): 1095-1106.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed