Please wait a minute...
材料导报  2020, Vol. 34 Issue (11): 11090-11098    https://doi.org/10.11896/cldb.19030197
  无机非金属及其复合材料 |
“核-壳-冠”聚合物胶束模板合成无机中空纳米材料的研究进展
陈有为1,2,3, 王夏天2,3, 李琦1, 张威波2,3, 史丹2,3, 黄姣2,3, 陈丹超2,3, 周生虎1
1 华东理工大学化学工程联合国家重点实验室,上海 200237
2 宁波检验检疫科学技术研究院,宁波 315012
3 宁波出入境检验检疫局技术中心, 宁波315012
Progress in the Synthesis of Inorganic Hollow Nanomaterials with Core-Shell-Corona Polymer Micelles as Templates
CHEN Youwei1,2,3, WANG Xiatian2,3, LI Qi1, ZHANG Weibo2,3, SHI Dan2,3, HUANG Jiao2,3, CHEN Danchao2,3,ZHOU Shenghu1
1 State key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
2 Ningbo Academy of Science and Technology for Inspection and Quarantine, Ningbo 315012, China
3 Ningbo Entry-Exit Inspection and Quarantine Bureau Technical Center, Ningbo 315012, Chin
下载:  全 文 ( PDF ) ( 6262KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 无机中空纳米材料由于其低密度、高表面/体积比、低热膨胀系数等特点,近年来在催化、锂电池电极材料、药物输送等诸多领域显示出了突出的应用潜力。目前,此类材料的制备方法中,应用最为广泛的是模板法。早期的模板法多采用硬模板法,硬模板一般包括金属晶体、二氧化硅纳米球和PS乳胶纳米球等,但该方法存在因合成工艺步骤复杂导致的产物产率较低,以及模板去除时外壳结构脆弱等缺点。为克服上述缺点,后续的研究主要转向软模板法,常见的软模板包括乳液液滴、表面活性剂胶束和嵌段共聚物胶束等。
   然而,近年来的研究发现,当采用乳液液滴或者表面活性剂胶束作为软模板来制备无机中空纳米材料时,由于上述软模板的可变形性,会导致所制备的无机中空纳米材料的形态和分散性较差。基于这些发现,后续的研究又相继转向利用两亲性分子来合成无机中空纳米材料。两亲性分子可自组装为有序的球形等形状的胶束,这些胶束主要由单分子、AB二嵌段、ABA三嵌段共聚物等形成“核-冠( Core-corona)”结构,嵌段共聚物胶束可以为中空纳米结构提供相对更刚性的空心支架,从而实现更好的尺寸和形状控制。但是,实验发现,采用此类胶束的冠(Corona)作为外壳形成的模板时,胶束的冠区域会因为吸收无机壳层材料的前驱体而变得不稳定,易导致严重的团聚现象。因此,目前最新的一些研究成果主要通过新开发三组分ABC三嵌段共聚物来克服上述软模板的缺陷,ABC三嵌段共聚物胶束可以为无机纳米组装体提供比AB二嵌段和ABA 三嵌段共聚物更多样的形态和功能特征,而且无机材料的前驱体被刻意选择性地吸附到胶束的壳层(Shell)区域,保证了胶束的冠区域免于被无机前驱体沉积,从而极大地提高了整个胶束的稳定性,避免了产物发生严重的团聚。
   目前,采用PS-PVP-PEO、PS-PVMP-PEO、PS-b-PAA-b-PEO等不同形式的ABC三嵌段共聚物形成的“核-壳-冠( Core-shell-corona)”聚合物胶束,已成功制备了中空氧化硅纳米球、金属氧化物中空纳米球、中空氧化钛纳米球、含金属氧化物在其空腔的中空介孔二氧化硅纳米结构等。在这些无机中空结构的制备过程中,聚合物胶束的核区域主要作为中空空核形成的模板;壳区域主要作为无机前驱体溶胶-凝胶反应的反应区;冠区域起到稳定胶束的作用。
   本文归纳了应用“核-壳-冠”聚合物胶束制备无机中空纳米材料的研究进展,分别对聚合物胶束模板的发展情况、不同结构的无机中空纳米材料的制备方法和机理等进行了介绍,并着重介绍了无机中空纳米材料在锂电池电极材料、催化以及药物输送等领域的应用情况,以期为发展更优异的无机中空纳米材料制备方法和进一步拓展该类材料的应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈有为
王夏天
李琦
张威波
史丹
黄姣
陈丹超
周生虎
关键词:  无机中空纳米结构  “核-壳-冠”聚合物胶束  中空氧化硅纳米材料  中空氧化钛纳米球  中空介孔二氧化硅纳米反应器    
Abstract: Inorganic hollow nanomaterials have shown outstanding application potential in catalysis, lithium battery electrode materials, drug delivery and many other fields due to their low density, high surface volume ratio and low thermal expansion coefficient. At present, template method is the most widely used method in the preparation of this kind of materials. Hard template method was used in the early stage. Hard template gene-rally includes metal crystals, silica nanospheres and PS latex nanospheres. However, this method suffered from low product yield due to complex synthesis process and shell weakness upon template remove. In order to overcome these shortcomings, researchers have turned to soft template method. Common soft templates include emulsion droplets, surfactant micelles and block copolymer micelles.
For emulsion and surfactant methods, the morphology and dispersity of the resulting hollow products are usually poor due to the deformability of soft templates. Block copolymer micelles can provide a relatively more rigid scaffold for hollow nanostructures that can afford better size and shape control.Amphiphilic molecules can self-assemble into ordered spherical and other shaped micelles with “core-corona” structure, which are mainly composed of single molecules, AB diblock, ABA triblock copolymers, etc. In these systems, the corona of the micelles acts as a reservoir of the inorganic precursors, and the core acts as a template of the hollow. In this approach, however, the template micelles become very unstable when the precursor is asorbed into the corona, leading to the formation of aggregates. To circumvent these problems, a three-component ABC triblock copolymer is newly developed. ABC triblock copolymer micelles can provide nanoassemblies with more diverse morphological and functional features than AB diblock and ABA triblock copolymers. The precursor of the inorganic material is selectively asorbed into the shell domain, leaving the corona free from the inorganic precursors that would destabilize the micelle. The core, meanwhile, is the template for the formation of the hollow void.
At present, “core-shell-corona” polymer micelles formed by different ABC triblock copolymers, such as PS-PVP-PEO, PS-PVMP-PEO, PS-b-PAA-b-PEO, have successfully been used to prepare hollow silica nanospheres, metal oxide hollow nanospheres, hollow titanium oxide nanosp-heres, and hollow mesoporous silica nanostructures containing metal oxides in their cavities. In the preparation of these inorganic hollow structures, the core region of the polymer micelles mainly serves as a template for the formation of hollow void; the shell region mainly serves as the reaction region for the sol-gel reaction of the inorganic precursor; corona area acts to stabilize the micelles.
This review reports the research progress in the preparation of inorganic hollow nanomaterials using “core-shell-corona” polymer micelles, with respect to the development of polymer micelle templates and the preparation methods of the inorganic hollow nanomaterials with different structures. The applications of inorganic hollow nanomaterials are also discussed, such as the electrode materials, catalysis and drug delivery.
Key words:  inorganic hollow nanomaterials    “core-shell-corona” polymer micelle    hollow silica nanospheres    hollow titania nanospheres    hollow mesoporous silica nanostructures reactors
                    发布日期:  2020-05-13
ZTFLH:  TQ51  
基金资助: 浙江省公益技术应用研究(分析测试)计划项目(2017C37044);宁波中盛产品检测有限公司科技项目(2019ZS04)
通讯作者:  huyongecust@163.com   
作者简介:  陈有为,2011年6月毕业于中国科学院研究生院,获得工学硕士学位。现为华东理工大学化工学院博士研究生,在周生虎教授的指导下进行研究。目前主要研究领域为可控金属纳米材料的合成与应用。
周生虎,华东理工大学教授、博士研究生导师,浙江省千人计划专家。2003—2007年在美国马里兰大学攻读博士学位,2007—2008年在美国能源部橡树岭国家实验室从事博士后研究,主要从事天然气催化重整、可控双金属纳米颗粒的合成、纳米催化剂的制备及应用,在J. Am. Chem. Soc.,Angew. Chem. Int. Ed., Adv. Funct. Mater., J. Phys. Chem. C, J. Power Sources, Langmuir, ChemPhysChem上发表多篇高水平研究论文,申请或授权中国专利3项、美国专利1项。
引用本文:    
陈有为, 王夏天, 李琦, 张威波, 史丹, 黄姣, 陈丹超, 周生虎. “核-壳-冠”聚合物胶束模板合成无机中空纳米材料的研究进展[J]. 材料导报, 2020, 34(11): 11090-11098.
CHEN Youwei, WANG Xiatian, LI Qi, ZHANG Weibo, SHI Dan, HUANG Jiao, CHEN Danchao,ZHOU Shenghu. Progress in the Synthesis of Inorganic Hollow Nanomaterials with Core-Shell-Corona Polymer Micelles as Templates. Materials Reports, 2020, 34(11): 11090-11098.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030197  或          http://www.mater-rep.com/CN/Y2020/V34/I11/11090
1 Li X, Iocozzia J, Chen Y, et al.Angewandte Chemie, 2018, 57(8),2046.
2 Lou X W, Archer L A, Yang Z. Advanced Materials, 2008, 20, 3987.
3 Bastakoti B P, Guragain S, Yokoyama Y , et al.Langmuir, 2011, 27(1),379.
4 Bastakoti B P, Inuoe M, Yusa S I, et al.Chemical Communications, 2012, 48(52), 6532.
5 Han M, Yin X, Kong L, et al.Journal of Materials Chemistry, 2014, 2(39), 16403.
6 Kim S W, Kim M, Lee W Y, et al.Journal of the American Chemical Society, 2002,124, 7642.
7 Bourlinos A B, Karakassides M A, Petridis D. Chemical Communications, 2001,16, 1518.
8 Schmidt H T, Ostafin A E, Liposome. Advanced Materials, 2002, 14, 532.
9 Fowler C. E, Khushalani D, Mann S.Journal of Materials Chemistry, 2001, 11, 1968.
10 Bergbreiter D E S. Angewandte Chemie International Edition, 1999, 38, 2870.
11 Caruso F. Science, 1998, 282, 1111.
12 Caruso F. Chemistry-A European Journal, 2000,6, 413.
13 Hu J, Chen M, Fang X, et al.Chemical Society Reviews, 2011, 40, 5472.
14 Moffitt M, Khougaz K, Eisenberg A. Accounts of Chemical Research, 1996, 29(2), 95.
15 Li Y, Bastakoti B P, Yamauchi Y.APL Materials, 2016, 4(4), 703.
16 Stephan Förster, Antonietti M. Advanced Materials, 1998, 10(3), 195.
17 Zhu K, Zhu Z, Zhou H, et al.Chinese Chemical Letters, 2017,S1001841717300980.
18 Chen Y, Yang D, Yoon Y J, et al.Journal of the American Chemical So-ciety, 2017, 139.
19 Sasidharan M, Nakashima K.Accounts of Chemical Research, 2013, 47(1), 157.
20 Konishcheva E, Daubian D, Gaitzsch J, et al.Helvetica Chimica Acta, 2018, 101.
21 André H Gröschel, Axel H E Müller. Nanoscale, 2015, 7(28), 11841.
22 Sudhina G, Juan P M. Polymer Chemistry, 2018, 1039.
23 Khanal A, Inoue Y, Yada M, et al.Journal of the American Chemical Society, 2007, 129(6), 1534.
24 Gohy J F, Willet N, Varshney S, et al. Angewandte Chemie International Edition, 2001, 40, 3214.
25 Lei L, Gohy J F, Willet N, et al. Macromolecules, 2004, 37(3), 1089.
26 Khanal A, Li Y, Takisawa N, et al.Langmuir, 2004, 20(12), 4809.
27 Sun B, Guo C, Yao Y, et al.Journal of Materials Chemistry, 2012, 22(36), 19076.
28 Liu D, Nakashima K .Inorganic Chemistry, 2009, 48(9),3898.
29 Sokolova V, Epple M.Angewandte Chemie (International ed. in English), 2008, 47(8), 1382.
30 Kim S W, Kim M, Lee W Y, et al.Journal of the American Chemical Society, 2002, 124, 7642.
31 Caruso F, Shi X, Caruso R A, et al.Advanced Materials, 2001, 13, 740.
32 Xu H, Wei W, Zhang C, et al. Chemistry—An Asian Journal, 2007, 2(7), 828.
33 Yang Z Z, Niu Z W, Lu Y F. Angewandte Chemie International Edition, 2005, 42, 1974.
34 Nakashima T, Kimizuka N.Journal of the American Chemical Society, 2003, 125(21), 6386.
35 Li W, Coppens M O. Chemistry of Materials, 2005, 17(9), 2241.
36 Yusa S I, Yokoyama Y, Morishima Y.Macromolecules, 2009, 42(1), 376.
37 Sasidharan M, Nakashima K, Gunawardhana N, et al.Chemical Communications, 2011, 47(24), 6921.
38 Dong A, Ren N, Tang Y, et al.Journal of the American Chemical Society, 2003, 125(17), 4976.
39 Li Y, Bastakoti B P, Imura M, et al.Chemistr-A European Journal, 2014, 20(20), 6027.
40 Bastakoti B P, Guragain S, Yokoyama Y, et al. Langmuir, 2011, 27(1), 379.
41 Bastakoti B P, Guragain S, Yokoyama Y, et al.New Journal of Chemistry, 2011, 36, 125.
42 Morales V, María Gutiérrez‐Salmerón, Moisés Balabasquer, et al.Advanced Functional Materials, 2016, 26(40), 7291.
43 Fu L, Zhao S, Chen Y, et al.Chemical Communications, 2016, 52(32), 5577.
44 Wang H, Wang J G, Zhou H J, et al. Chemical Communications, 2011, 47, 7680.
45 Gu H, Wang J, Ji Y, et al.Journal of Materials Chemistry A, 2013, 1, 12471.
46 Li K, Wei J, Zhou S, et al. Angewandte Chemie International Edition, 2018, 57, 16458.
47 Liu J, Liu D, Nakashima K. et al. Langmuir, 2009, 25, 739.
48 Sasidharan M, Nakashima K, Gunawardhana N, et al.Nanoscale, 2011, 3(11), 4768.
49 Inagaki S, Guan S, Ohsuna T, et al.Nature, 2002, 416(6878), 304.
50 Han H, Li L, Wang W, et al.Langmuir, 2017, 33, 9857.
51 Li Y, Tan H, Salunkhe R R, et al.Chemical Communications, 2017, 53, 236.
52 Sasidharan M, Bhanja P, Senthil C, et al.RSC Advances, 2016, 6, 11370.
53 Dang N M, Zhao W, Yusa S I. New Journal of Chemistry, 2015, 39, 4726.
54 Huang R, Liu Y, Chen Z, et al. ACS Applied Materials & Interfaces, 2015, 7(7), 3949.
55 Zhou L, Song W, Chen Z, et al.Environmental Science & Technology, 2013, 47(8), 3833.
56 Bastakoti B P, Guragain S, Yokoyama Y, et al. Langmuir, 2011, 27(1), 379.
No related articles found!
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed