Please wait a minute...
材料导报  2020, Vol. 34 Issue (1): 1080-1094    https://doi.org/10.11896/cldb.19100229
  |
用于电阻式柔性应变传感器的导电聚合物复合材料研究进展
任秦博1,王景平1,,杨立2,李翔3,王学川4
1 陕西科技大学化学与化工学院,西安710021
2 中国石油长庆油田分公司第一输油处,西安710021
3 陕西科技大学电子信息与人工智能学院,西安710021
4 陕西科技大学轻工科学与工程学院,西安710021
Research Progress of Conductive Polymer Composites for Resistive Flexible Strain Sensors
REN Qinbo1,WANG Jingping1,,YANG Li2,LI Xiang3,WANG Xuechuan4
1 Key College of Chemistry and Chemical Engineering,Shaanxi University of Science & Technology,Xi'an 710021,China
2 Key Changqing Oilfield Branch Company of CNPC,The First Oil Transportation Department,Xi'an 710021,China
3 Key School of Electronic Information and Artificial Intelligence,Shaanxi University of Science & Technology,Xi'an 710021,China
4 Key College of Bioresources Chemical and Materials Engineering,Shaanxi University of Science & Technology,Xi'an 710021,China
下载:  全 文 ( PDF ) ( 15317KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为物联网的触角,传感器迎来了新的发展机遇。而随着可穿戴行业的发展,电阻式柔性应变传感器在人体穿戴实时监测、机器人仿生皮肤、医学健康跟踪、运动肢体捕捉以及生产振动检测等领域展现出广阔的应用前景。聚合物导电复合材料是电阻式柔性应变传感器最常用的应变传感核心材料,具有柔性好、应变检测范围大以及成本低的优势。
但现有的基于聚合物导电复合材料的传感器普遍存在迟滞明显、线性度低、导电网络稳定性差的缺点,此外对于某些复合材料在应变过程中的导电机理阐释也存在缺陷。因此,近年来诸多学者从聚合物导电复合材料导电机理、不同导电填料的特性、聚合物本身特性以及不同的制备工艺等方面开展了大量的研究工作。在解释聚合物导电复合材料的导电机理方面,目前多采用渗流理论解释其导电过程。目前聚合物导电复合材料所用的导电填料主要分为碳系导电填料和金属系导电填料两大类,由于碳系导电填料的导电稳定性好、价格低,是目前使用的主流。而目前使用的聚合物基体主要分为硅橡胶、天然橡胶以及聚氨酯三大类,硅橡胶主要用于小应变、高灵敏度传感器,天然橡胶主要用于大应变传感器。而聚合物导电复合材料的制备工艺主要分为填充式、夹心式、吸附式三种,填充式的传感器应变范围较大,而夹心式和吸附式传感器应变范围相对较小。
本文对聚合物导电复合材料的导电机理、导电填料、聚合物基体以及不同制备工艺进行了归纳和分析,并展望了柔性应变传感用聚合物导电复合材料今后可能的研究热点和发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任秦博
王景平
杨立
李翔
王学川
关键词:  应变传感  导电聚合物复合材料  导电机理  导电填料  聚合物基体  制备工艺    
Abstract: As the tentacles of the internet of things, the sensor is facing the new development opportunity. With the development of the wearable industry, the flexible resistance-strain sensor shows broad application prospects in the fields of human body wearable real-time monitoring, robot bionic skin, medical health tracking, moving limb capture and production vibration detection, etc. Conductive polymer composites are the most commonly used core materials for the flexible resistance-strain sensor, which possess the advantages of excellent flexibility, large strain detection range and low cost.
However, the resistance-strain sensors based on conductive polymer composites have several shortcomings, such as obvious hysteresis, low linearity and unstable conductive network. The conduction mechanism of conductive polymer composites during the strain process was not interpreted clearly. Therefore, many scholars have done a great deal of researches on the fields of conduction mechanism, conductive filler, polymer matrix and preparation process. Currently, the percolation theory has been widely used to explain the conductive behavior of conductive polymer composites for resistance-strain sensor. The conductive fillers of conductive polymer composites mainly include carbon and metal materials. The carbon material is the main conductive filler due to its low cost and stable pathway. The polymer matrixes of conductive polymer composites mainly include silicone rubber, natural rubber and polyurethane. The silicone rubber is often used to the low-strain sensor and the natural rubber is often used to the large-strain sensor. The preparation processes of conductive polymer composites mainly include filling-type, sandwich-type and adsorption-type. The sandwich-type and adsorption-type sensors process a low strain range and the filling-type sensor processes a large strain range.
The conduction mechanism, conductive filler, polymer matrix and preparation process of conductive polymer composites for flexible resistance-strain sensor are summarized and analyzed in this paper. The research hotspots and the future development trend of conductive polymer compo-sites are prospected.
Key words:  strain sensing    conductive polymer composites    conductive mechanism    conductive filler    polymer matrix    preparation method
                    发布日期:  2020-01-15
ZTFLH:  TB33  
基金资助: 国家自然基金委自由申请项目(21776169);西安市科技计划项目(2017068CG/RC031〈SXKD007〉);陕西科技大学博士启动基金(BJ16-10)
通讯作者:  wangjingping@sust.edu.cn   
作者简介:  任秦博,2016年6月毕业于陕西科技大学,获得工学学士学位,现为陕西科技大学化学与化工学院硕士研究生,在王景平副教授的指导下进行研究,目前主要研究领域为电阻式柔性传感器的导电复合材料。
王景平,陕西科技大学化学与化工学院副教授、硕士研究生导师,1997年7月本科毕业于大连工业大学,2011年11月在西安交通大学电信学院取得电子科学与技术博士学位,2012年至2013年在香港理工大学进行博士后工作,主要从事高分子材料的成型加工、储能高分子材料以及电化学污水处理的研究工作。
王学川,陕西科技大学副校长,二级教授,轻工技术与工程学科带头人,博士研究生导师,兼任国家教育部高等学校轻工类专业教学指导委员会副主任委员,中国皮革协会技术委员会副主任,四川大学制革清洁技术国家重点实验室学术委员会委员,中国皮革协会科技委员会副主任,国家自然科学经济委员会项目评审专家,中国工程院表面活性剂开发促进会理事、全国皮革工业标准委员会制革分委员会委员。“中国皮革”编审和国内外有关专业期刊的编委、审稿人。入选国家科技部等8部委“新世纪百千万人才工程国家级人选”,享受国务院政府特殊津贴,获国家技术发明二等奖1项,国家级教学成果二等奖1项,省部级科技奖励7项,陕西省教学成果特等奖、一等奖各1项。
引用本文:    
任秦博,王景平,杨立,李翔,王学川. 用于电阻式柔性应变传感器的导电聚合物复合材料研究进展[J]. 材料导报, 2020, 34(1): 1080-1094.
REN Qinbo,WANG Jingping,YANG Li,LI Xiang,WANG Xuechuan. Research Progress of Conductive Polymer Composites for Resistive Flexible Strain Sensors. Materials Reports, 2020, 34(1): 1080-1094.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100229  或          http://www.mater-rep.com/CN/Y2020/V34/I1/1080
1 Wang S, Chung D D L. Carbon, 2006, 44(13),2739.
2 Gao S W, Gao D K, Liang Y, et al. Journal of Shenyang University of Technology, 2006(2), 16(in Chinese).
高松巍,高登奎,梁昱,等.沈阳工业大学学报, 2006(2), 16.
3 Xie Y, Liu X L, Chen X M, et al.Instrument Technique and Sensor, 2004(9),1(in Chinese).
解源,刘晓玲,陈学梅,等.仪表技术与传感器, 2004(9),1.
4 Zhou L Z, Zheng Y, Song G B, et al. Construction and Building Mate-rials, 2019,220,615.
5 Ritwik P, Matt Z, vinary S, et al. Macromolecular Chemistry and Phy-sics, 2019, 220(17) ,n/a.
6 Habib A, Shelke A, Amjad U, et al. Applied Sciences, 2018, 8(9),1683/1.
7 Villmow T,John A, Poetschke P, et al.Polymer, 2012, 53(14), 2908.
8 Wei G F.Mixed gas detection and analysis based on micro-hot plate gas sensor. Master's Thesis, Dalian University of Technology, China, 2006 (in Chinese).
魏广芬, 基于微热板式气体传感器的混合气体检测及分析. 硕士学位论文, 大连理工大学,2006.
9 Ma J, Zhou Y L, Bai X, et al. Nanoscale, 2019, 11(34),15821.
10 Lee S W, Lee W, Lee H G, et al. Sensors and Actuators B: Chemical, 2018, 255,1788.
11 Zhu L, Zeng W. Sensors and Actuators A: Physical, 2017, 267, 242.
12 Singh E, Meyyappan M, Nalwa H S. ACS Applied Materials & Interfaces, 2017, 9(40),34544.
13 Lone M Y, Kumar S, Husain M, et al. Physica E: Low-dimensional Systems and Nanostructures, 2017, 87,261.
14 Kumar R, AvasthiD K, Kaur A. Sensors and Actuators B: Chemical, 2017, 242,461.
15 Abideen Z U, Kim J H, Lee J H, et al. Journal of the Korean Ceramic Society, 2017, 54(5),366.
16 Nishio M, Sawaya S, Akita S, et al. Applied Physics Letters, 2005, 86(13),133111.
17 Lu H Z. Study on indoor air quality detection sensor of quartz crystal microbalance. Master's thesis, Dalian University of Technology, China, 2005 (in Chinese).
卢好正. 石英晶振微天平室内空气质量检测传感器的研究. 硕士学位论文, 大连理工大学,2005.
18 Li S Y, Chen S J, Zhou B G, et al. IEEE Electron Device Letters, 2017, 38(7),975.
19 Gao X, Wang M J, Fan B W. In: 2017 International Conference on Green Energy and Sustainable Development,Chongqing, 2017,pp.1864.
20 Yamada T, Hayamizu Y, Yamamoto Y, et al.Nature Nanotechnology, 2011, 6(5),296.
21 Wang T, Feng W W, Luo D C. Techniques of Automation and Applications, 2009, 28(8), 83(in Chinese).
王婷, 冯文武, 罗德超, 等. 自动化技术与应用, 2009, 28(8),83.
22 Wang H M, Li D, Zhong W. et al. ACS Applied Materials & Interfaces, 2019, 11(37),34251.
23 Sun L J, Chen S, Guo Y F, et al. Nano Energy, 2019, 63,103847.
24 Peng Y J, Yan B, Li Y S, et al. Journal of Materials Science, 2019, 55(3),1280.
25 Wang Y J, JiaY Y, Zhou Y J, et al. Journal of Materials Chemistry C, 2018, 6(30), 8160.
26 Nie M, Xia Y H, Yang H S.Cluster Computing, 2019, 22(4), 8217.
27 Li Y Q, Huang P, Zhu W B, et al.Scientific Reports, 2017, 7,45013.
28 Wang H T, Tong Y H, Zhao X L, et al.Organic Electronics, 2018,61, 304.
29 Park S J, Kim J, Chu M, et al.Advanced Materials Technologies, 2016, 1(5), n/a.
30 Wang Z, Huang Y, Sun J, et al.ACS Applied Materials & Interfaces, 2016, 8(37), 24837.
31 Yu X G, Li Y Q, Zhu W B, et al.Nanoscale, 2017, 9(20),6680.
32 Midya A, Gogurla N, Ray S K.Current Applied Physics, 2015, 15(6),706.
33 Hu Y G.Nano Research, 2018, 11(4),1938.
34 Hurtado N M C, Zarifi M H, Daneshmand M, et al. IEEE Sensors Journal, 2017, 99,1.
35 Yi H X.Construction and test of wearable wireless network based on knitted flexible sensor. Master's thesis, Donghua University, China, 2015 (in Chinese).
易红霞. 基于针织柔性传感器可穿戴式无线网络的构建与测试. 硕士学位论文,东华大学,2015.
36 Pegan J D, Zhang J, Chu M, et al.Nanoscale, 2016, 8(39), 17295.
37 Zhang B, Li B, Jiang S.Journal of Electronic Materials, 2017, 46(10),5737.
38 Yokota T, Zalar P, Kaltenbrunner M, et al.Science Advances, 2016, 2(4),e150156.
39 Roh E, Hwang B U, Kim D, et al. ACS Nano, 2015, 9(6),6252.
40 Li Z, Jiao W H, Qian L H, et al. Nano Research, 2015, 8(9),2978.
41 Lu J R, Wu D J, Chen G H.Plastics, 2004,33(5),43(in Chinese).
卢金荣, 吴大军, 陈国华. 塑料, 2004, 33(5),43.
42 Yang J G, Liu C C,Shi K.Modern Chemical Research, 2006(2),13 (in Chinese).
杨建高, 刘成岑, 施凯.化工中间体, 2006(2),13.
43 Tang H, Chen X F, Luo Y X. Polymer Materials Science and Enginee-ring, 1996, 12(2),1 (in Chinese).
汤浩, 陈欣方, 罗云霞. 高分子材料科学与工程, 1996, 12(2),1.
44 Liang Z J, Yang S S.Journal of South China University of Technology(Natural Science Edition), 2007(8),84 (in Chinese).
梁基照, 杨铨铨.华南理工大学学报(自然科学版), 2007(8),84.
45 Ye M Q, He L L, Han A J,et al. New Chemical Materials, 2008, 36(11),13 (in Chinese).
叶明泉, 贺丽丽, 韩爱军, 等.化工新型材料, 2008, 36(11),13.
46 Liu S J, Xue Q Z.Journal of China University of Petroleum(Edition of Natural Science), 2005, 29(1),140 (in Chinese).
刘金世, 薛庆忠.石油大学学报(自然科学版), 2005, 29(1),140.
47 Diwan P, Chandra A.Polymer Composites, 2012, 33(10),1750.
48 Aharoni, Shaul M.Journal of Applied Physics, 1972, 43(5),2463.
49 Shao P W, Lian T M, Zhong H S, et al.Journal of Wuhan University of Technology-Materials Science Edition, 2002, 17(4),69.
50 Liang J Z, Yang S S.Shanghai Plastics, 2010(1),1 (in Chinese).
梁基照, 杨铨铨.上海塑料, 2010(1),1.
51 Zhang X W, Huang R. Functional Materials, 1994(6),492 (in Chinese).
张雄伟, 黄锐.功能材料, 1994(6),492.
52 Yang S S, Liang J Z.Shanghai Plastics, 2009(4), 4(in Chinese).
杨铨铨, 梁基照.上海塑料, 2009(4), 4.
53 Van Beek L K H, Van Pul B I C F.Rubber Chemistry and Technology, 1963, 36(3),740.
54 Zhu C C, Guan H, Luo Y. Journal of Yunnan University(Natural Sciences Edition), 1992(S1),166(in Chinese).
朱长纯, 关辉, 罗援.云南大学学报:自然科学版, 1992(S1),166.
55 Huang Q A, Xiang T.Electronic devices, 1994(3), 20 (in Chinese).
黄庆安, 向涛.电子器件, 1994(3), 20.
56 Liu S Y, Huang Y M.Journal of Mechanical Engineering, 2011, 47(17),141 (in Chinese).
刘蜀阳, 黄玉美.机械工程学报, 2011, 47(17),141.
57 Hu H, Zhao L, Liu J, et al.Polymer, 2012, 53(15),3378.
58 Natarajan T S, Eshwaran S B, St Ckelhuber K W, et al.ACS Applied Materials & Interfaces, 2017, 9(5),4860.
59 Wang L, Ma F, Shi Q, et al.Sensors & Actuators A Physical, 2011, 165(2),207.
60 Luheng W, Tianhuai D, Peng W.Sensors and Actuators A: Physical, 2007, 135(2),587.
61 Knite M, Teteris V, Kiploka A, et al.Sensors and Actuators A (Physical), 2004, 110(1-3),142.
62 Job A E, Oliveira F A, Alves N, et al.Synthetic Metals, 2003, 135,99.
63 Wang L H, Ding T H, Peng W.Carbon, 2009, 47(14),3151.
64 Novák I, Krupa I, Janigová I. Carbon, 2005, 43(4),841.
65 Devaraj H, Yellapantula K, Stratta M, et al. Sensors and Actuators A: Physical, 2019, 285, 645.
66 Gao Y, Fang X, Tan J, et al.Nanotechnology, 2018,29(23), 235501/1.
67 Li Q, Li J, Tran D, et al. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2017, 5(42), 11092.
68 Nela L, Tang J, Cao Q, et al.Nano Letters, 2018,18(3), 2054.
69 Saetia K, Schnorr J M, Mannarino M M , et al.Advanced Functional Materials, 2014, 24(4), 492..
70 Zhang M, Wang C, Wang Q, et al.ACS Applied Materials & Interfaces, 2016, 8(32), 20894.
71 Park J J, Hyun W J, Mun S C, et al.ACS Applied Materials & Interfaces, 2015, 7(11),6317.
72 Hua Z, Gong T X, Wen H, et al.Electronic Components and Materials, 2018,37(9),27.
73 Ma Z L, Wei A J, Ma J Z, et al. Nanoscale, 2018, 10(15), 7116.
74 Ren J S, Wang C X, Zhang X, et al. Carbon, 2017, 111,622.
75 QinY Y, Peng Q Y, Ding Y J, et al. ACS Nano, 2015, 9(9), 8933.
76 Di W H, Zhang G, Zhao Z D, et al.Polymer International, 2004, 53(4),449.
77 Duan Q Y, Wang J P, Ren Q B, et al. Journal of Applied Polymer Science, 2018, 135(35), n/a.
78 Kim S W, Kwon S N, Na S I.Composites Part B: Engineering, 2019, 167,573.
79 Zhang S J, Zhang H L, Yao G, et al. Journal of Alloys and Compounds, 2015, 652,48.
80 Tee C K, Wang C, Allen R, et al.Nature Nanotechnology, 2012, 7(12),825.
81 Amjadi M, Pichitpajongkit A, Lee S, et al.ACS Nano, 2014, 8(5),5154.
82 Gong S, Daniel T H L, Su B, et al. Advanced Electronic Materials, 2015, 1(4),1400063/1.
83 Li M F, Li H Y, Zhong W, et al.ACS Applied Materials & Interfaces, 2014, 6(2),1313.
84 Fan X, Wang N, Yan F, et al.Advanced Materials Technologies, 2018, 3(6),1800030.
85 Liu K N, Zhou Z Q, Yan X W, et al. Polymers (Basel), 2019, 11(7), 11.
86 Yan S C, Saleem M F, Ma H R, et al. ChemistrySelect, 2019. 4(14), 4407.
87 Tang L, Liu Z, Wujcik E K.ACS Applied Materials & Interfaces, 2019, 11(22),20453.
88 Liu S Y, Lian L, Pan J, et al.IEEE Transactions on Electron Devices, 2018, 65(5),1939.
89 Huang Y, Gao L, Zhao Y, et al.Journal of Applied Polymer Science, 2017, 134(39),45340.
90 Zhao Y N, Huang Y, Hu W, et al. Smart Materials and Structures, 2019. 28(3), 035004.
91 Asada T, Wang J J. Rubber Translations, 1985(3),39 (in Chinese).
浅田泰司, 王金鉴.橡胶译丛, 1985(3),39.
92 Chen B, Gu Z T.High Power Laser and Particle Beams, 2015, 27(8),27089003 (in Chinese).
陈薄, 古忠涛.强激光与粒子束, 2015, 27(8),27089003.
93 Jing X, Zhao W, Lan L.Journal of Materials Science Letters, 2000, 19(5),377.
94 Cochrane, Cédric, Lewandowski M, et al. Sensors, 2010, 10(9),8291.
95 Li Y, Wang S F, Zhang Y,et al. China Plastic, 2004(10),63 (in Chinese).
李莹, 王仕峰, 张勇,等.中国塑料, 2004(10),63.
96 Yazdani H, Hatami K, Khosravi E, et al.Carbon, 2014, 79,393.
97 Bai J B, Allaoui A.Composites Part A:Applied Science and Manufactu-ring, 2003, 34(8),689.
98 Zheng Y, Li Y, Dai K, et al.Composites Part A: Applied Science and Manufacturing, 2017,101,41.
99 Liu H, Li Q, Zhang S, et al. Journal of Materials Chemistry C, 2018, 6(45),12121.
100 Geim A K.Science, 2009, 324(5934),1530.
101 Jeong Y R, Park H, Jin S W, et al. Advanced Functional Materials, 2015, 25(27),4228.
102 Jiao Y, Young C, Yang S, et al.IEEE Sensors Journal, 2016, 16(22), 7870.
103 Stankovich S, Dikin D A, Dommett G H B, et al.Nature, 2006, 442(7100),282.
104 Dhand V, Rhee K Y, Ju Kim H, et al.Journal of Nanomaterials, 2013, 2013,1.
105 Zhang S J, Zhang H L, Yao G, et al. Journal of Alloys and Compounds, 2015, 652,48.
106 Gong S, Zhao Y, Yap L W, et al.Advanced Electronic Materials, 2016, 2(7), n/a.
107 Ying H, Chao H, Jian L, et al.Sensor Review, 2019, 39(2), 233.
108 Xu C, Hu S, Zhang R, et al.Polymer Bulletin, DOI: 10.1007/s00289-019-02705-2.
109 Huang Y, Wang W, Sun Z, et al.Journal of Materials Research, 2015, 30(12),1869.
110 Kim J H, Kim Y J, Baek W K, et al.Proceedings of SPIE-The International Society for Optical Engineering, 2010, 7646,76460N.
111 Liu P, Pan W D, Liu Y, et al. Composites Science and Technology, 2018, 159, 42.
112 Huang Y, Zhao Y, Wang Y, et al.Smart Materials and Structures, 2018, 27(3),035013.
113 Boland C S, Khan U, Backes C, et al. ACS Nano, 2014, 8(9),8819.
114 Zheng Y, Li Y, Dai K, et al.Composites Science and Technology, 2018, 156, 276.
115 Ali M M, Maddipatla D, Narakathu B B, et al.Sensors and Actuators A Physical, 2018, 274, 109.
116 Chen S, Wei Y, Wei S, et al.ACS Applied Materials & Interfaces, 2016,8(38), 25563.
117 Dong D D, Ma J Z, Ma Z L, et al. Composites Part A: Applied Science and Manufacturing, 2019,123, 222.
[1] 杨立, 汪鹏生, 张浩, 王丰, 杨雄刚, 冯江涛, 华堃池, 胡永成. 生物活性玻璃骨材料力学性能及成骨作用改性的研究进展[J]. 材料导报, 2019, 33(Z2): 553-558.
[2] 王坤宇, 冯运莉, 柳昆. 纳米复相永磁材料的研究进展[J]. 材料导报, 2019, 33(z1): 116-121.
[3] 郑贝贝, 邵玲. 国内Bi系高温超导材料制备工艺研究进展[J]. 材料导报, 2019, 33(z1): 318-320.
[4] 孙淑红, 朱艳, 青红梅, 胡永茂, 杨斌. 亚稳相纤锌矿铜锌锡硫(WZ-CZTS)纳米晶的合成及光伏应用的研究现状与进展[J]. 材料导报, 2019, 33(5): 761-769.
[5] 左迎峰, 李萍, 屠茹茹, 赵星, 袁光明, 吴义强. 基于响应曲面法优化酸解氧化制备高醛基含量的双醛淀粉的工艺条件[J]. 材料导报, 2019, 33(2): 335-341.
[6] 成小乐, 尹君, 屈银虎, 符寒光, 赵冰. 连续碳化硅纤维增强钛基(SiCf/Ti)复合材料的制备技术[J]. 《材料导报》期刊社, 2018, 32(5): 796-807.
[7] 温变英, 王雪娇, 方晓霞, 张扬. 碳系导电填料性质对PVB基功能薄膜结构及电磁屏蔽效能的影响[J]. 材料导报, 2018, 32(24): 4346-4350.
[8] 崔田路, 顾雪, 贾中秋, 尹晓桐, 曹中秋, 张轲. 不同工艺制备的纳米晶Ag-25Ni合金在NaCl溶液中的腐蚀性能[J]. 材料导报, 2018, 32(16): 2798-2802.
[9] 李庆达, 郭建永, 胡军, 王宏立, 连法增, 陆曹卫. 通过改进的制备工艺提高FINEMET纳米晶磁粉芯的磁性能及其机理*[J]. 《材料导报》期刊社, 2017, 31(16): 26-30.
[10] 王延杰, 汝杰, 赵东旭, 王田苗, 沈奇, 陈花玲, 朱灯林. 离子聚合物-金属复合材料(IPMC)的电极界面研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 24-29.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed