Please wait a minute...
材料导报  2018, Vol. 32 Issue (24): 4346-4350    https://doi.org/10.11896/j.issn.1005-023X.2018.24.025
  高分子与聚合物基复合材料 |
碳系导电填料性质对PVB基功能薄膜结构及电磁屏蔽效能的影响
温变英, 王雪娇, 方晓霞, 张扬
北京工商大学材料与机械工程学院,北京 100048
Influence of Carbon-based Conductive Filler’s Properties on the Electromagnetic Shielding Effectiveness of PVB/Filler Functional Composite Films
WEN Bianying, WANG Xuejiao, FANG Xiaoxia, ZHANG Yang
School of Material Science and Mechanical Engineering, Beijing Technology and Business University, Beijing 100048
下载:  全 文 ( PDF ) ( 2319KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 分别以形状和电导率不同的石墨、镀镍石墨和镀银碳纤维为功能填料,采用溶液流延法制备了聚乙烯醇缩丁醛基导电薄膜,并对薄膜的微观结构和电学性能进行了研究。结果表明:填料性质(包括形状、密度和电导率)对复合材料的分布结构和电学性能有重要影响,纤维状的填料更容易搭接成导电网络。石墨和镀银碳纤维填充体系中,填料在聚合物基体内部分布基本均匀;而镀镍石墨填充体系中,填料在聚合物基体内部形成了梯度分布。不同的分布状态导致材料的导电性能在薄膜的上下表面产生差异并对复合材料的电磁屏蔽效能产生影响。在同等体积含量下,复合材料的电磁屏蔽效能主要受材料电导率的影响,三种复合材料中,镀银碳纤维填充体系的屏蔽效能最高,镀镍石墨填充体系次之,石墨填充体系最低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
温变英
王雪娇
方晓霞
张扬
关键词:  复合材料薄膜  碳系导电填料  分布结构  电磁屏蔽    
Abstract: The present paper mainly concerns the influence of carbon-based conductive filler’s properties on the electromagne-tic shielding effectiveness of polyvinyl butyral (PVB)/filler functional composite films. Three kinds of fillers, i.e., graphite, nickel coated graphite and silver coated carbon fiber, each of which differs in conductivity and geometrical shape, were selected as functional fillers to modify PVB resin, respectively, and consequently form a series of PVB/filler functional composite films by solution casting method. Our experiment confirmed the significant influences of the filler’s properties, including geometrical shape, density and conductivity on the microstructure and electrical performance of the composites. It was found that fibrous filler more easily lap into a conductive network. Scanning electron microscope (SEM) observation revealed that fillers were distributed more uniformly in PVB matrix in both the graphite and silver coated carbon fiber composite system. However, the nickel coated graphite formed a gradient distribution inside the composite. The difference in distribution structure leads to the discrepancy of the electrically conductive performance between the top and bottom surface of the film and brings varying electromagnetic shielding effectiveness. Under the same filler volume content, the electromagnetic shielding effectiveness of the composite mainly depends on the conductivity of the material. Among the three composites, the PVB/silver coated carbon fiber system and the PVB/graphite system have the highest and the lowest electromagnetic shielding effectiveness, respectively, and the PVB/nickel coated graphite holds a medium between the former two composites.
Key words:  composite film    carbon-based conductive filler    distribution structure    electromagnetic shielding
                    发布日期:  2019-01-23
ZTFLH:  TB333  
基金资助: 国家自然科学基金面上项目(21274007);北京工商大学高分子功能薄膜创新团队资助项目(19008001071)
作者简介:  温变英:女,1964年生,博士,教授,主要从事高分子功能复合材料与绿色复合材料研究 E-mail:wenbianying@tsinghua.org.cn
引用本文:    
温变英, 王雪娇, 方晓霞, 张扬. 碳系导电填料性质对PVB基功能薄膜结构及电磁屏蔽效能的影响[J]. 材料导报, 2018, 32(24): 4346-4350.
WEN Bianying, WANG Xuejiao, FANG Xiaoxia, ZHANG Yang. Influence of Carbon-based Conductive Filler’s Properties on the Electromagnetic Shielding Effectiveness of PVB/Filler Functional Composite Films. Materials Reports, 2018, 32(24): 4346-4350.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.24.025  或          http://www.mater-rep.com/CN/Y2018/V32/I24/4346
1 Wan C, Li J. Synthesis and electromagnetic interference shielding of cellulose-derived carbon aerogels functionalized with alpha-Fe2O3 and polypyrrole [J].Carbohydrate Polymers,2017,161:158.
2 Wan Y J, Zhu P L, Yu S H, et al. Graphene paper for exceptional EMI shielding performance using large-sized graphene oxide sheets and doping strategy[J].Carbon,2017,122:74.
3 Naeem S, Baheti V, Tunakova V, et al. Development of porous and electrically conductive activated carbon web for effective EMI shielding applications[J].Carbon,2017,111:439.
4 Li J, Liu H, Guo J, et al. Flexible, conductive, porous, fibrillar polymer-gold nanocomposites with enhanced electromagnetic interference shielding and mechanical properties[J].Journal of Materials Chemistry C,2017,5(5):1095.
5 Kar G P, Biswas S, Rohini R, et al. Tailoring the dispersion of multiwall carbon nanotubes in co-continuous PVDF/ABS blends to design materials with enhanced electromagnetic interference shielding [J].Journal of Materials Chemistry A,2015,3(15):7974.
6 Cao H F, Zhang Q, Wu Z. Progress of elecreomagnetic shielding property of graphene-based material[J].New Chemical Materials,2016,44(2):1(in Chinese).
曹海峰,张琪,吴忠.石墨烯类材料电磁屏蔽性能研究进展[J].化工新型材料,2016,44(2):1.
7 Zhang Y, Qiu M N, Yu Y, et al. A novel polyaniline-coated bagasse fiber composite with core-shell heterostructure provides effective electromagnetic shielding performance[J].ACS Applied Materials & Interfaces,2017,9(1):809.
8 Kim K W, Han W, Kim B S, et al. A study on EMI shielding enhancement behaviors of Ni-plated CFs-reinforced polymer matrix composites by post heat treatment[J].Applied Surface Science,2017,415:55.
9 Kashi S, Gupta R K, Baum T, et al. Dielectric properties and electromagnetic interference shielding effectiveness of graphene-based biodegradable nanocomposites[J].Material Design,2016,109:68.
10 Biswas S, Arief I, Panja S S, et al. Absorption-dominated electromagnetic wave suppressor derived from ferrite-doped cross-linked graphene framework and conducting carbon[J].ACS Applied Mate-rials & Interfaces,2017,9(3):3030.
11 Ebrahimi I, Gashti M P. Chemically reduced versus photo-reduced clay-Ag-polypyrrole ternary nanocomposites: Comparing thermal, optical, electrical and electromagnetic shielding properties[J].Materials Research Bulletin,2016,83:96.
12 Mondal S, Nayak L, Rahaman M, et al. An effective strategy to enhance mechanical, electrical, and electromagnetic shielding effectiveness of chlorinated polyethylene-carbon nanofiber nanocomposites[J].Composites Part B,2017,109:155.
13 Li G D, Zhang H, Li Y N, et al. Advances of polyvinyl butyral resin application[J].Materials Review A: Review Papers,2013,27(12):93(in Chinese).
李国东,张泓,李亚宁,等.聚乙烯醇缩丁醛树脂的研究进展[J].材料导报:综述篇,2013,27(12):93.
14 Bora P J, Mallik N, Ramamurthy P C, et al. Poly(vinyl butyral)-polyaniline-magnetically functionalized fly ash cenosphere composite film for electromagnetic interference shielding[J].Composites Part B,2016,106:224.
15 Zeng Z, Jin H, Chen M, et al. Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding[J].Advanced Functional Materials,2016,26(2):303.
16 Xu Y, Li Y, Hua W, et al. Light-weight silver plating foam and carbon nanotube hybridized epoxy composite foams with exceptional conductivity and electromagnetic shielding property[J].ACS Applied Materials & Interfaces,2016,8(36):24131.
17 Zhao B, Wang S, Zhao C X, et al. Synergism between carbon materials and Ni chains in flexible poly(vinylidene fluoride) composite films with high heat dissipation to improve electromagnetic shielding properties[J].Carbon,2018,127:469.
18 Zhang Y, Fang X X, Wen B Y, et al. Facile preparation of asymmetric Ni/PVC film with controlled structure: Application as a high-performance EMI shielding material[J].Journal of Applied Polymer Science,2015,132(38):42560.
19 Zhang Y, Fang X X, Wen B Y. Asymmetric Ni/PVC films for high-performance electromagnetic interference shielding[J].Chinese Journal of Polymer Science,2015,33(6):899.
[1] 温变英, 段磊. PEI/Ni梯度电磁屏蔽薄膜材料耐腐蚀性研究[J]. 材料导报, 2019, 33(6): 1065-1069.
[2] 徐志超, 冯中学, 史庆南, 杨应湘, 王效琪, 起华荣. 定向凝固制备Mg98.5Zn0.5Y1合金中LPSO相的结构及其对合金电磁屏蔽性能的影响[J]. 材料导报, 2018, 32(6): 865-869.
[3] 王丽, 王哲, 宁国艳, 沈玉林, 王喜明. 木基导电电磁屏蔽材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2320-2328.
[4] 刘晓英, 肖玉, 彭家惠. 微纳技术在泡沫混凝土中的应用进展*[J]. 《材料导报》期刊社, 2017, 31(3): 80-85.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed