Please wait a minute...
材料导报  2018, Vol. 32 Issue (6): 865-869    https://doi.org/10.11896/j.issn.1005-023X.2018.06.003
  材料研究 |
定向凝固制备Mg98.5Zn0.5Y1合金中LPSO相的结构及其对合金电磁屏蔽性能的影响
徐志超1, 冯中学1, 史庆南1, 杨应湘2, 王效琪2, 起华荣2
1 昆明理工大学材料科学与工程学院, 昆明 650093;
2 云南省新材料制备与加工重点实验室,昆明 650093
Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance
XU Zhichao1, FENG Zhongxue1, SHI Qingnan1, YANG Yingxiang2, WANG Xiaoqi2, QI Huarong2
1 School of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093;
2 Key Laboratory of Advances Materials of Yunnan Province, Kunming 650093
下载:  全 文 ( PDF ) ( 2240KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了定向凝固制备Mg98.5Zn0.5Y1合金中LPSO相的微观结构以及对电磁屏蔽性能的影响。实验结果表明Mg98.5-Zn0.5Y1合金中生成了有序排列的片层状14H-LPSO相。通过对比普通铸造与定向凝固Mg98.5Zn0.5Y1合金的电磁屏蔽性能,发现有序排列的LPSO相可以提高合金的电磁屏蔽性能。阐述了多层均匀平面体屏蔽体的理论模型,探讨了长周期有序相的位向与镁合金电磁屏蔽性能的关系。通过在合金中加入Zr元素,研究了LPSO相的宽度对电磁屏蔽性能的影响。结果表明,在高频下细小的LPSO相能够提升材料的电磁屏蔽性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐志超
冯中学
史庆南
杨应湘
王效琪
起华荣
关键词:  Mg98.5Zn0.5Y1合金  14H-LPSO  晶体结构  Zr  电磁屏蔽    
Abstract: The microstructure of the LPSO phase in Mg98.5Zn0.5Y1 alloy prepared by directional solidification and its effect on electromagnetic shielding performance were investigated. The formation of 14H-type LPSO was observed. For the directional solidification polycrystals, the LPSO exhibited a lamellar shape. By comparing the electromagnetic shielding properties of ordinary cast and directional solidified Mg98.5Zn0.5Y1 alloy, it was found that the ordered LPSO phase could increase the electromagnetic shielding performance. The theoretical model of multi-layer uniform planar and the relationship between electromagnetic shielding performance and orientation of LPSO in magnesium were discussed. By adding the element Zr, the effect of the LPSO width on the electromagne-tic shielding performance was investigated. The result showed that the electromagnetic shielding performance was improved in high frequency due to the addition of Zr.
Key words:  Mg98.5Zn0.5Y1 alloy    14H-LPSO    crystal structure    zirconium    electromagnetic shielding
               出版日期:  2018-03-25      发布日期:  2018-03-25
ZTFLH:  TG146.2+2  
基金资助: 云南省科技厅青年基金项目(2016FD033); 省级人培项目(KKSY201351055); 教育部博士点基金(20135314110003); 校重点基金(KKZ1201451001)
作者简介:  徐志超:男,1989年生,博士研究生,主要研究方向为稀土镁合金 E-mail:xzc@kmust.edu.cn; 冯中学:通信作者,男,副教授,研究方向为稀土镁合金 E-mail:fzxue@163.com
引用本文:    
徐志超, 冯中学, 史庆南, 杨应湘, 王效琪, 起华荣. 定向凝固制备Mg98.5Zn0.5Y1合金中LPSO相的结构及其对合金电磁屏蔽性能的影响[J]. 材料导报, 2018, 32(6): 865-869.
XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance. Materials Reports, 2018, 32(6): 865-869.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.06.003  或          http://www.mater-rep.com/CN/Y2018/V32/I6/865
1 Radasky W A. The threat of intentional interference (IEMI) to wired and wireless systems[C]∥Proceedings of the International Zurich Symposium on Electromagnetic Compatibility.Singapore,2006.
2 Gooch J W, Daher J K. Electromagnetic shielding and corrosion protection for aerospace vehicles[M].New York:Springer,2007.
3 刘顺华.电磁波屏蔽及吸波材料.第2版[M].北京:化学工业出版社,2014.
4 Vasquez H, Espinoza L, Lozano K, et al. Simple device for electromagnetic interference shielding effectiveness measurement[C]∥2009 IEEE,2009.
5 Liu X Y, Zhan M S, Wang K. Preparation and characterization of electromagnetic interference shielding polyimide foam[J].Journal of Applied Polymer Science,2012,127(5):4129.
6 Chen X, Liu L, Pan F, et al. Microstructure, electromagnetic shielding effectiveness and mechanical properties of Mg-Zn-Cu-Zr alloys[J].Materials Science & Engineering B,2015,197(1):67.
7 Geetha S, Satheesh Kumar K K, Rao C R K, et al. EMI shielding: Methods and materials—A review[J].Journal of Applied Polymer Science,2009,112(4):2073.
8 Chen X, Liu J, Zhang Z, et al. Effect of heat treatment on electromagnetic shielding effectiveness of ZK60 magnesium alloy[J].Materials & Design,2012,42:327.
9 Xu Z C, Shi Q N, Feng Z X. Advances in application of magnesium alloys LPSO structure[J].Hot Working Technology,2015(18):22(in Chinese).
徐志超,史庆南,冯中学.镁合金中LPSO相的应用研究进展[J].热加工工艺,2015(18):22.
10 Schulz R B, Plantz V C, Brush D R. Shielding theory and practice[J].IEEE Transactions on Electromagnetic Compatibility,1988,30(3):187.
11 Lu Ruopeng. Microstructure evolution of LPSO phase and the corresponding damping capacities and mechanical properties in Mg-Zn-Y alloys[D].Chongqing:Chongqing University,2015(in Chinese).
鲁若鹏. Mg-Zn-Y合金中LPSO相的调控及其对阻尼和力学性能的影响机制研究[D].重庆:重庆大学,2015.
12 Zhu Y M, Weyland M, Morton A J, et al. The building block of long-period structures in Mg-RE-Zn alloys[J].Scripta Materialia,2009,60:980.
13 Tang P Y, Wu M M, Tang B Y, et al. Microstructure of 18R-type long period ordered structure phase in Mg97Y2Zn1 alloy[J].Transactions of Nonferrous Metals Society of China,2011,21(4):801.
14 Shao X H, Yang Z Q, Ma X L. Strengthening and toughening mechanisms in Mg-Zn-Y alloy with a long period stacking ordered structure[J].Acta Materialia,2010,58(14):4760.
15 Zhu Y M, Morton A J, Nie J F. The 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys[J].Acta Materialia,2010,58(8):2936.
16 Schulz R B, Plantz V C, Brush D R. Shielding theory and practice[J].IEEE Transactions on Electromagnetic Compatibility,1992,30(3):187.
17 Lv B J, Peng J, Zhu L L, et al. The effect of 14H LPSO phase on dynamic recrystallization behavior and hot workability of Mg-2.0Zn-0.3Zr-5.8Y alloy[J].Materials Science & Engineering A,2014,599(1):150.
[1] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[2] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[3] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[4] 温变英, 段磊. PEI/Ni梯度电磁屏蔽薄膜材料耐腐蚀性研究[J]. 材料导报, 2019, 33(6): 1065-1069.
[5] 周超, 李得天, 周晖, 张凯锋, 曹生珠. MEMS器件真空封装用非蒸散型吸气剂薄膜研究概述[J]. 材料导报, 2019, 33(3): 438-443.
[6] 周超, 王辉, 欧阳柳章, 朱敏. 高压复合储氢罐用储氢材料的研究进展[J]. 材料导报, 2019, 33(1): 117-126.
[7] 张玉, 黄晓锋, 马颖, 闫峰云, 李元东, 郝远. 添加Sm对不同尺寸Mg-6Zn-0.4Zr镁合金坯料非枝晶组织演变的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1283-1288.
[8] 徐志超, 冯中学, 史庆南, 杨应湘. Mg-Zn-Y合金中14H-LPSO相与W相的电子结构与弹性性能的第一性原理计算[J]. 材料导报, 2018, 32(6): 1026-1031.
[9] 焦慧彬, 陈善达, 陈送义, 陈康华. Mn和Zr对Al-Zn-Mg-Cu铝合金各向异性的影响[J]. 材料导报, 2018, 32(6): 937-942.
[10] 朱利敏, 李全安. Mg-8.08Gd-2.41Sm-0.3Zr合金热压缩变形及热加工图[J]. 《材料导报》期刊社, 2018, 32(4): 593-597.
[11] 邓燕君, 黄光杰, 曹玲飞, 吴晓东, 黄利. 预变形对Al-Cu-Li-Mn-Zr合金的第二相析出及力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 569-573.
[12] 洪凯, 吴林, 蒋伟, 吴继礼, 张博. Cu-Zr非晶合金薄带的高温拉伸蠕变研究[J]. 材料导报, 2018, 32(24): 4309-4313.
[13] 温变英, 王雪娇, 方晓霞, 张扬. 碳系导电填料性质对PVB基功能薄膜结构及电磁屏蔽效能的影响[J]. 材料导报, 2018, 32(24): 4346-4350.
[14] 肖国庆, 周盼, 丁冬海. 熔盐对ZrO2纤维模板辅助燃烧合成ZrB2纤维的影响[J]. 材料导报, 2018, 32(22): 3875-3879.
[15] 杨历, 刘远洲, 李子院, 覃爱苗. 硫化铜量子点的研究进展[J]. 材料导报, 2018, 32(21): 3737-3742.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed