Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (5): 796-807    https://doi.org/10.11896/j.issn.1005-023X.2018.05.016
  材料综述 |
连续碳化硅纤维增强钛基(SiCf/Ti)复合材料的制备技术
成小乐1, 2, 尹君1, 屈银虎1, 符寒光3, 赵冰4
1 西安工程大学机电工程学院,西安 710048;
2 金属挤压与锻造装备技术国家重点实验室,西安 710032;
3 北京工业大学材料科学与工程学院,北京 100124;
4 北京航空制造工程研究所625所,北京 100024
A Review of the State-of-Art Preparation Techniques and Interface Characteristics of Continuous-silicon-fiber-reinforced Titanium Matrix(SiCf/Ti) Composites
CHENG Xiaole1,2, YIN Jun1, QU Yinhu1, FU Hanguang3, ZHAO Bing4
1 School of Mechanical and Electrical Engineering, Xi’an Polytechnic University,Xi’an 710048;
2 State Key Laboratory of Metal Extrusion and Forging Equipment Technology,Xi’an 710032;
3 College of Materials Science and Engineering, Beijing University of Technology,Beijing 100124;
4 Avic Beijing Aeronautical Manufacturing Technology Research Institute,Beijing 100024
下载:  全 文 ( PDF ) ( 2588KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 连续碳化硅纤维(SiCf)由于具有比强度、比模量高,耐磨性、热稳定性好等性能优点,常作为增强体制备SiC纤维增强钛基复合材料。与钛合金基体相比,其具有密度更低、强度更高、疲劳蠕变性能大幅提升等优点,但横向性能却明显下降。因此,该类材料常被设计制作成单向增强性部件,广泛应用在航空航天等领域,如发动机的传动轴、整体叶环、盘类及风扇叶片等多种复合材料的结构件。
   碳化硅纤维增强钛基复合材料的性能主要由碳化硅纤维的性能、基体性能及纤维与基体之间的结合界面性能决定。目前批量生产的SiC纤维性能较差,界面结合状态与复合材料性能之间关系的研究开展较少,还不能为钛基复合材料构件设计提供足够的数据支持。因此,近年来研究者们主要从SiCf/Ti基复合材料力学行为的研究角度出发,探究不同基体及纤维类型、复合材料制备工艺方法、界面特性及产物对SiCf/Ti基复合材料界面结合力及破坏机制的影响,获得了大量有价值的数据,以期开发出成本低、产物稳定性好、可批量生产SiCf/Ti基复合材料的制造工艺方法。目前较为成熟的碳化硅纤维有英国DERA-Sigma公司提供的Sigma系列SiCf及美国Textron公司提供的SCS系列SiCf,后者强度最高达到6 200 MPa。SiCf/Ti基复合材料的制备工艺包括金属箔-纤维-金属箔工艺(FFF)、单层带工艺(MT)、基体-涂层纤维工艺(MCT)等,制备复合材料的工艺根据零部件的用途来定,FFF适用于制备板材等大尺寸构件,MCT适用于制备叶环、轴、管、叶片等复杂结构件。界面是增强体与基体之间的纽带和桥梁,界面结构设计、界面反应控制及反应产物均影响着界面的力学特性。在SiCf/Ti基复合材料的纤维和基体之间添加过渡层能够减缓它们之间的相互扩散及化学反应,过渡层选用反应层和惰性涂层组成的双层涂层较好。界面反应产物受涂层成分、基体组织、复合和热处理工艺、环境因素等的影响,增强纤维及基体性能、优选制备工艺、控制界面反应及产物有利于提高复合材料的力学性能。
   本文总结了连续SiC纤维(SiCf)增强钛基复合材料的应用研究现状,详述了SiCf/Ti基复合材料的钛合金基体材料、SiCf的种类及性能,SiCf与SiCf/Ti基复合材料的制备方法,分析了SiCf/Ti基复合材料界面结构设计及反应产物,阐明了界面力学特性与复合材料性能的关系,指出国内SiCf/Ti基复合材料发展的重点应放在高性能SiC纤维的研究与开发、界面层设计及界面与性能的关系以及复合材料分析检测手段三个方面,为SiCf/Ti基复合材料的制备及其今后的实际应用提供了参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
成小乐
尹君
屈银虎
符寒光
赵冰
关键词:  SiCf/Ti  连续SiC纤维  钛基合金  制备工艺  界面特性    
Abstract: Continuous SiC fiber having advantages of high specific strength, high specific modulus, strong wear resisitance and good heat stability is the reinforcement of SiC fiber reinforced titanium matrix composite. SiCf/Ti matrix composite comparing with titanium alloy matrix has strengths of lower density, higher strength, more excellent fatigue and creep deformation resistance, but its transverse property decreases obviously. Therefore, SiCf/Ti matrix composite is used to design unidirectional reinforced structures, such as transmission shafts, blings, blisks and fan blades, and broadly applys to aerospace fields.
   SiCf/Ti matrix composite’s properties depend on the properties of SiCf, matrix and the interface bonding strength between SiCf and matrix. Duing to the poor properties of batch production SiCf and the less researches of relation between interface bonding state and composite performances, there are not sufficient data to support the design of titanium matrix composite structure at present. Therefore, reseachers have studied on the various types of matrix and fiber, the techniques of composite preparation,the effect of interface feature and production on interface bonding force and interface failure of composites in recent years. The data from studies probably optimize the technique to produce SiCf/Ti matrix composite with low cost, good stability and feasible volume production. Mature SiCf includes the Sigma series from British DERA-Sigma company and the SCS series with strength of 6 200 MPa from USA Textron company. The prepartion techniques of SiCf/Ti matrix composite include foil-fiber-foil, mono-layer technique and matrix-coating fiber technique, etc. The usages of parts determine on the techniques of composite preparation. FFF is applied to large size structures as flat sections, and MCT is utilized to complex structures as blings, shafts, pipes and blades. Interface is the bridge connecting reinforcement and matrix. Interfacial design, interfacial reaction control and reaction products have impact on interfacial mechanical characteristic. Adding transition layer with a better method of selecting double layer consisted of reaction and inert coating layer between fiber and matrix slows down the diffusion and chemical reaction. Interface reaction products are influenced by coating composition, matrix texture, preparation and thermal treatment and environment, etc. Reinforcing fiber and matrix properties, optimizing preparation techniques, controlling interface reaction and products are beneficial to enhance mechanics properities of compo-site.
   In this paper, the application and research status of these SiCf/Ti matrix composites are reviewed, the choice of the titanium alloys matrix, the different types of SiC fibers and the fabrication of the composites are also summarized systematically. The design of SiCf/Ti matrix composites interface and its reaction products are analyzed. The relationship between the interfacial mechanical pro-perties and the composite properties is illustrated. And finally, the paper points out that the future development of continuous SiC fiber reinforced titanium matrix composite should be focused on the high-performance SiC fiber, the design of interface layer, the relation of interface and property, and the new composites detection and analysis machines, providing reference for the future work.
Key words:  SiCf/Ti    continuous SiC fiber    titanium matrix    preparation technique    interface characteristic
               出版日期:  2018-03-10      发布日期:  2018-03-10
ZTFLH:  TB331  
基金资助: 国家重点基础研究发展计划(973)项目(2012CB724303);西安市科技计划项目(2017074CG/RC037(XAGC007));2017年度西安工程大学研究生创新基金项目(CX201705)
作者简介:  成小乐:男,1976年生,教授,硕士研究生导师,主要从事材料成型及加工方向研究 E-mail:chengxiaole@mail.tsinghua.edu.cn
引用本文:    
成小乐, 尹君, 屈银虎, 符寒光, 赵冰. 连续碳化硅纤维增强钛基(SiCf/Ti)复合材料的制备技术[J]. 《材料导报》期刊社, 2018, 32(5): 796-807.
CHENG Xiaole, YIN Jun, QU Yinhu, FU Hanguang, ZHAO Bing. A Review of the State-of-Art Preparation Techniques and Interface Characteristics of Continuous-silicon-fiber-reinforced Titanium Matrix(SiCf/Ti) Composites. Materials Reports, 2018, 32(5): 796-807.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.05.016  或          http://www.mater-rep.com/CN/Y2018/V32/I5/796
1 Wang Y M, Zhang G X, Zhang X, et al. Advances in SiC fiber reinforced titanium matrix composites[J].Acta Metallurgica Sinica,2016,52(10):1153(in Chinese).
王玉敏,张国兴,张旭,等.连续SiC纤维增强钛基复合材料研究进展[J].金属学报,2016,52(10):1153.
2 Steyer T E, Zok F W, Wallsb D P. Experimental assessment of fatigue life and failure modes in a SiC/Ti composite[J].Composites Science and Technology,1998,58(10):1583.
3 Zhang Z C, Wang Y M, Li Y F, et al. Numerical simulation on residual stress of SiC fiber reinforced titanium matrix composite[J].Chinese Journal of Materials Research,2016,30(5):355(in Chinese).
张志超,王玉敏,李玉芳,等.SiC纤维增强钛基复合材料残余应力的数值模拟[J].材料研究学报,2016,30(5):355.
4 Vasse A. Continuous fibre reinforced titanium and aluminium composites: A comparison[J].Materials Science and Engineering,1999,263(2):305.
5 Hansmann J M, Leyens C, Kaysser W A. The way of optimization of the fatigue resistance of titanium matrix composites-models and experiments[C]∥Ti-2003 Science and Technology,Proceeding of the 10th World Conference on Titanium.Hamburg:WILEY-VCH Verlag GmbH & Co.KgaA.Germany,2003:2593.
6 Zhao B, Jiang B, Gao Z Y, et al. Transverse strength analysis of continuous SiC fiber reinforced titanium matrix composites[J].Chinese Journal of Rare Metals,2013,37(3):373(in Chinese).
赵冰,姜波,高志勇,等.连续SiC纤维增强钛基复合材料横向强度分析[J].稀有金属,2013,37(3):373.
7 Lou J, Yang Y, Luo X. Effects of fiber volume fraction on transverse tensile properties of SiC/Ti-6Al-4V composites[J].Rare Metal Materials and Engineering,2011,40(4):0575.
8 Zhou Y G, Yang Y Q. Progress in the study of titanium matrix composites reinforced by SiC fibers[J].Acta Metallurgica Sinica,2002,38(9):461(in Chinese).
周义刚,杨延清.碳化硅连续纤维增强钛基复合材料的研究进展[J].金属学报,2002,38(9):461.
9 Huang X, Li Z X, Huang H. Recent development of new high-temperature titanium alloys for high thrust-weight ratio aero-engines[J].Materals China,2011,30(6):24(in Chinese).
黄旭,李臻熙,黄浩.高推重比航空发动机用新型高温钛合金研究进展[J].中国材料进展,2011,30(6):24.
10 Liang C H. Application of continuous fiber reinforced metal matrix composite component on turbofan aeroengine[J].Aeronautical Ma-nufacturing Technology,2009(15):32(in Chinese).
梁春华.连续纤维增强的金属基复合材料部件在航空涡扇发动机上的应用[J].航空控制技术,2009(15):32.
11 Fan Z, Cantor B. The kinetics and mechanism of interfacial reaction in sigma fibre-reinforced Ti MMCs[J].Composites Part A,1997,28(2):131.
12 Clyne T W, Witers P J. An introduction to metal matrix composites[M].Britain:Cambridge University Press,1993:56.
13 Shankar M. Titanium matrix composites-mechanical behavior[M].USA:Technomic Publishing Company,1998:40.
14 Ralph E, Anderson. Titanium matrix composite turbine engine component consortium(TMCTECC)[J].The Amptiac Newsletter,1998,33(14):3607.
15 Bai B L, Zhu M S. Progress on the research of titanium alloy in NIN[J].Titanium,2013,30(3): 7.
16 Sarala D. Development of SiC/TiAl composites:Processing and interfacial phenomena[J].Materials Science and Engineering,2001,A300(1-2):211.
17 Leucht R, Dudek H J, Weber K, et al. Magnetron sputtering for metal matrix composite processing[J].Zeitschrift Fur Metallkunde,1996,87(5):424.
18 Yang R, Shi N L, Wang Y M, et al. Recent progress in SiC fibre reinforced titanium matrix composites[J].Titanium Industry Progress,2005,22(5):32(in Chinese).
杨锐,石南林,王玉敏,等.SiC纤维增强钛基复合材料研究进展[J].钛工业进展,2005,22(5):32.
19 Lu P, Feng L, Zhao Y,et al. An experimental investigation of the interface in continuous silicon carbide fibre-reinforced Ti-15-3 alloy matrix composite[J].Journal of Materials Engineering,1994(1):11(in Chinese).
陆盘金,冯利增,赵亚利.连续碳化硅纤维增强Ti-15-3合金基复合材料界面的初步研究[J].材料工程,1994(1):11.
20 Li J. First-principles study on the interface of SiCf/Ti composite[D].Xi’an:Northwestern Polytechnical University,2014(in Chinese).
李健.SiCf/Ti基复合材料界面的第一性原理研究[D].西安:西北工业大学,2014.
21 Leyens C. Titanium and titanium alloys[M].Beijing:Chemical Industry Press,2005:97.
22 张国定.金属基复合材料[M].上海:上海交通大学出版社,1996.
23 Li X, Yang Y, Zhang R, et al. Research on the coating of CVD SiC fiber[J].Materials China,2010,29(3):33(in Chinese).
李雪成,杨延清,张荣军,等.CVD法SiC纤维的涂层研究[J].中国材料进展,2010,29(3):33.
24 Cheng T T, Doorbar P, Jones I P, et al. The microstructure of Sigma 1140+ SiC fibers[J].Materials Science and Engineering A,1999,A260(1-2):139.
25 Xian J. TEM study of silicon carbide fibers[D].Ohio:Case Western Reserve University,1992.
26 Xie Y. Analysis of microstructure and chemical element of SiCf/Ti-43Al-9V composites prepared by vacuum hot pressing[J].Foundry Technology,2014,35(5):871(in Chinese).
谢英辉.真空热压制备SiCf/Ti-43Al-9V复合材料微观组织及化学元素分析[J].锻造技术,2014,35(5):871.
27 Peng H. Manufacturing titanium metal matrix composites by conso-lidating matrix coated fibers[J].Technology,2005,21(5):12.
28 Wang H. Fabrication and performance of continuous fiber-reinforced silicon carbide matrix composites by reaction infiltration[D].Changsha:National University of Defense Technology,2012(in Chinese).
王洪磊.反应浸渗制备连续纤维增强SiC基复合材料及其性能研究[D].长沙:国防科学技术大学,2012.
29 Yang Y Q, Zhu Y, Ma Z.Processing of Ti matrix composites reinforced by SiC fibers[J].Mechanical Science and Technology,2002,21(3):424(in Chinese).
杨延清,朱艳,马志军,等.SiC长纤维增强Ti基复合材料的制备[J].机械科学与技术,2002,21(3):424.
30 Yang Y, Zhu Y, Chen Y, et al. Processing and property of SiC fiber reinforced Ti-matrix composite[J].Rare Metal Materials and Engineering,2002,31(3):201(in Chinese).
杨延清,朱艳,陈彦,等.SiC纤维增强Ti基复合材料的制备及性能[J].稀有金属材料与工程,2002,31(3):201.
31 Wang Y M, Xiao P, Shi N L,et al. SiC fiber reinforced titanium matrix composite interface evolution and component manufacturing[J].Materials China,2010,29(5):9(in Chinese).
王玉敏,肖鹏,石南林,等.SiC纤维增强钛基复合材料界面研究及构件研制[J].中国材料进展,2010,29(5):9.
32 Gorsse S, Petitcorps Le Y. A new approach in the understanding of the SiC/Ti reaction zone composition and morphology[J].Compo-sites Part A:Applied Science and Manufacturing,1998,29:1221.
33 Subramanian P R, Krishnamurthy S, Keller S T. Processing of continuously reinforced Ti-alloy metal matrix composites (MMC) by magnetron sputtering[J].Materials Science and Engineering,1998,244(1):1.
34 Guan C L, Li Y, He X D. EB-PVD technology and its application status[J].Aeronautical Manufacturing Technology,2003(11):35(in Chinese).
关春龙,李垚,赫晓东.电子束物理气相沉积技术及其应用现状[J].航空制造技术,2003(11):35.
35 Zhang W, Yang Y Q, Zhao G M, et al. Interfacial reaction studies of B4C-coated and C-coated SiC fiber reinforced Ti-43Al-9V compo-sites[J].Intermetallics,2014,50:14.
36 Guo Z X. Fiber reinforced metal matrix composite: Retrospect & prospect[R].London:Queen Mary&Westfield College,1999.
37 Zhang X Y, He G Q, Liu Y Y, et al. Improvements of substrate holder of the JGP-560B magnetron sputtering system[J].Research and Exploration in Laboratory,2013,32(12):72.
38 Gundel D B,Miracle D B.The influence of interface structure and composition on the response of single-fiber SiC/Ti-6Al-4V compo-sites to transverse tension[J].Applied Composite Materials,1998,5(5):95.
39 Yang Y Q,Dudek H J,Kumpfert J. TEM investigations of the fiber/matrix interface in SCS-6 SiC/Ti-25Al-10Nb-3V-1Mo composites[J].Composites Part A,1998,29:1235.
40 Yang Y Q,Dudek H J.Interface stability in SCS-6 SiC/Super α2[J].Composites Scripta Material,1997,37(4):503.
41 Yang Y Q, Dudek H J, Kumpfert J. Interfacial reaction and stability of SCS-6 SiC/Ti-25Al-10Nb-3V-1Mo[J].Composites Materials Science and Engineering,1998,246:213.
42 Yang Y Q,Werner A, Dudek H J, et al. TEM investigations of interfacial processes in SCS-6 SiC/TiB2/Superα2[J].Composites Part A,1999,30:1209.
43 Yang Y Q, Zhu Y, Ma Z J. Formation of interfacial reaction pro-ducts in SCS-6 SiC/Ti2AlNb composites[J].Scripta Materialia,2004,51:385.
44 Smith P R,Rhodes C G, Revelos W C. Interfacial evalution in a Ti-25Al-17Nb/SCS-6 composite[J].Metals and Materials Scoiety,1989,19(1):35.
45 Dudek H J, Borath R, Leucht R, et al.Transmission electron microscopy of the fibre-matrix interface in SiC-SCS-6 fibre-reinforced IMI834 alloys[J].Journal of Materials Science,1997,32(20):5355.
46 Silvain Js, Bihr J, Lepetitcorps Y. EPMA and XPS studies of TiAl-SiC interfacial chemical compatibility[J].Composites Part A: Applied Science and Manufacturing,1996,27(9):691.
47 Zhang W,Yang Y Q, Zhao G M,et al.Investigation of interfacial reaction in SiC fiber reinforced Ti-43Al-9V Composites[J].Intermetallics,2013,33:54.
48 Ferraris M,Badini C,Marino F, et al. Interfacial reactions in a Ti-6Al-4V based composite: Role of the TiB2 coating[J].Journal of Matrerial Science,1993,28:1983.
49 Kyeong H B, Patrick S G. Chemical interation between Sigma 1140+SiC fiber and Ti-6Al-4V[J].Scripta Materialia,2001,44:607.
50 Mogilevsky P. Application of diffusion barriers in composite material[J].Materials Science and Engineering,1998,242(1):235.
51 Shatwell R A. Fibre-matrix interfaces in titanium matrix composites made with sigma monofilament[J].Materials Science and Enginee-ring,1999,259(2):162.
52 Dudek H J,Werner A,Leucht R. Grade titanium boride fibre protective coating for titanium matrix composites[J].Materials Science and Engineering,1996,212:242.
53 Shyue J,Soboyejo W O,Fraser L H. Microstructural characterization of layered interfaces in a silicon cabide fiber reinforced titanium matrix composite[J].Scripta Metallurgica et Materialia,1995,32(10):1695.
54 Zhang D, Sun Y B, Zhao Y Q, et al. Interfacial products in SiC fiber reinforced Ti-Al based intermetallic alloys[J].Rare Metals,2011,30(3):524.
55 Weber C H,Du Z Z, Zok F W. High temperature deformation and fracture of a fibre reinforced titanium matrix composite[J].Acta Materialia,1996,44(2):683.
56 Duva J M,Curtin W A,Wadlev H N. An ultimate tensile strength dependence on processing for consolidated metal matrix composites[J].Acta Metallurgica et Materialia,1995,43(3):1119.
57 Thomas M P,Winstone M R. Effect of matrix alloy on longitudinal tensile behaviour of fiber reinforced titanium matrix composites[J].Scripta Materialia,1997,37(12):1855.
58 Gundel D B,Wawner R E. Experimental and theoretical assessment of the longitudinal tensile strength of unidirectional SiC fiber/tita-nium matrix composites[J].Composites Science and Technology,1997,57(5):471.
59 Wang Q, Fu C. Experimental characterization of interphase mecha-nical properties of composites[J].Composites Part B,1996,27:123.
60 Guo S Q. Improvement of mechanical properties of SiC (SCS-6) fibre-reinforced Ti3AlC2 matrix composites with Ti barrier layer[J].Journal of the European Ceramic Society,2016,36(6):1349.
61 Krishnamurthy S, Smith P R, Miracle D B. Modification of transverse creep behavior of an orthorhombic titanium aluminide based Ti-22Al-23Nb:SiCf composite using heat treatment[J].Materials Science and Engineering,1998,243:285.
62 Lissenden C J,Herakovich C T, Pindera. Inelastic deformation of metal matric composites[J].NASA Contractor Report,1993,109(9):100.
63 Clyne T W, Feillard W, Pascal S, et al. Interface mechanics and macroscopic failure in titanium-based composites[J].Computers & Structures,1996,56(2):501.
64 Majumdar B S. Development and characterization of new coatings for improved balance of mechanical properties of titanium matrix composites[J].Materials Science and Engineering,1999,259(2):171.
65 Thomas M P, Winstone M R. Longitudinal yielding behaviour of SiC fibre reinforced titanium matrix composites[J].Composites Science and Technology,1999,59(2):297.
66 Karl U K. Metal matrix composites[M].Weinheim: Wiley-VCH,2006.
67 Foster G C. Tensile and flexure strength of fiber-reinforced compo-sites: Direct numerical simulations and analytic models[D].Blacksburg: Virginia Polytechnic Institute and State University,1998.
68 Thomas M P, Winstone M R. Longitudinal yielding behaviour of SiC fibre reinforced titanium matrix composites[J].Composites Science and Technology,1999,59(2):297.
69 Marshall D B, Shaw M C, Morris W L. The determination of interfacial properties from sliding experiments: The roles of misfit anisotropy and interfacial roughness[J].Acta Metallurgica et Materialia,1995,43(5):2041.
70 Weber C H, Du Z Z, ZOK F W. High temperature deformation and fracture of a fibre reinforced titanium matrix composite[J].Acta Materialia,1996,44(2):683.
71 Dinter J, Peters M P W, Hemptenmacher J. Finite element mode-ling of the push-out test for SiC fibre-reinforced titanium alloys[J].Composites Part A:Applied Science and Manufacturing,1996,27(9):749.
72 Hui C Y, Shia D, Berglund L A. Estimation of interfacial shear strength: An application of a new statistical theory for single fiber composite test[J].Composites Science and Technology,1999,59(13):2037.
73 Chandra N, Ghonem H. Interfacial mechanics of push-out tests: Theory and experiments[J].Composites Part A: Applied Science and Manufacturing,2001,32:575.
74 Preussa M, Rauchsa G, Withersa P J,et al. Interfacial shear strength of Ti/SiC fibre composites measured by synchrotron strain measurement[J].Composites Part A:Applied Science and Manufacturing,2002,33(10):1381.
75 Gundel D B, Wawner R E. Experimental and theoretical assement of the longitudinal tensile strength of unidirectional SiC fiber/titanium matrix composites[J].Composites Science and Technology,1997,57(4):471.
76 Carrerea N, Valleb R, Bretheauc T. Multiscale analysis of the transverse properties of Ti-based matrix composites reinforced by SiC fibres: From the grain scale to the macroscopic scale[J].International Journal of Plasticity,2004,20(4):783.
[1] 郑贝贝, 邵玲. 国内Bi系高温超导材料制备工艺研究进展[J]. 材料导报, 2019, 33(z1): 318-320.
[2] 王坤宇, 冯运莉, 柳昆. 纳米复相永磁材料的研究进展[J]. 材料导报, 2019, 33(z1): 116-121.
[3] 孙淑红, 朱艳, 青红梅, 胡永茂, 杨斌. 亚稳相纤锌矿铜锌锡硫(WZ-CZTS)纳米晶的合成及光伏应用的研究现状与进展[J]. 材料导报, 2019, 33(5): 761-769.
[4] 左迎峰, 李萍, 屠茹茹, 赵星, 袁光明, 吴义强. 基于响应曲面法优化酸解氧化制备高醛基含量的双醛淀粉的工艺条件[J]. 材料导报, 2019, 33(2): 335-341.
[5] 刘帅洋, 王爱琴, 吕世敬, 田捍卫. 铜铝层状复合材料界面特性及深加工研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 828-835.
[6] 崔田路, 顾雪, 贾中秋, 尹晓桐, 曹中秋, 张轲. 不同工艺制备的纳米晶Ag-25Ni合金在NaCl溶液中的腐蚀性能[J]. 材料导报, 2018, 32(16): 2798-2802.
[7] 李庆达, 郭建永, 胡军, 王宏立, 连法增, 陆曹卫. 通过改进的制备工艺提高FINEMET纳米晶磁粉芯的磁性能及其机理*[J]. 《材料导报》期刊社, 2017, 31(16): 26-30.
[8] 王延杰, 汝杰, 赵东旭, 王田苗, 沈奇, 陈花玲, 朱灯林. 离子聚合物-金属复合材料(IPMC)的电极界面研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 24-29.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed