Please wait a minute...
材料导报  2024, Vol. 38 Issue (23): 23080181-13    https://doi.org/10.11896/cldb.23080181
  金属与金属基复合材料 |
电子封装用纳米级无铅钎料的研究进展
黄玺1, 张亮1,*, 王曦2, 陈晨2, 卢晓2
1 厦门理工学院材料科学与工程学院,福建 厦门 361024
2 江苏师范大学机电工程学院,江苏 徐州 221116
Research Progress of Nanoscale Lead-free Solder in Electronic Packaging
HUANG Xi1, ZHANG Liang1,*, WANG Xi2, CHEN Chen2, LU Xiao2
1 School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, Fujian, China
2 School of Mechatronic Engineering, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
下载:  全 文 ( PDF ) ( 44785KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着电子工业的不断发展,封装技术呈现出多功能化、高密度、高集成的发展趋势。焊点作为连接芯片和基板的重要一环,其强度和可靠性面临着巨大的挑战。近年来,随着纳米科技的兴起,许多研究者尝试将钎焊材料的尺寸缩小至纳米级,纳米级钎料的热稳定性、导电性、润湿性等一些方面的性能与常规钎料相比有着不同程度的提高。本工作总结了近年来研究较多的几种纳米钎料的制备方法,重点分析了以化学还原法为主导的纳米级钎料的制备工艺;通过分析纳米SnAgCu、SnAg、SnBi、烧结Ag钎料显微组织的演化,总结了钎料纳米化后的改性机理;最后还讨论了现阶段钎料纳米化难以突破的问题以及不足之处,为纳米无铅钎料的进一步研究提供理论支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄玺
张亮
王曦
陈晨
卢晓
关键词:  电子封装  纳米级钎料  制备工艺  改性机理    
Abstract: With the continuous development of the electronics industry, packaging technology presents the development trend of multi-function, high density and high integration. The solder joint plays an important interconnection between chip and substrate, faces great challenges in strength and reliability. In recent years, with the rise of nanotechnology, many researchers tried to reduce the size of soldering materials to nanometer level for modification. The investigations show that the thermal stability, conductivity, wettability and other properties of the nanoscale sol-ders are improved in different degrees compared with the conventional solders. In this work, several preparation methods of nano-brazing metal which have been widely used in recent years are summarized and the preparation process of nano-brazing metal dominated by chemical reduction method is emphatically analyzed, by analyzing the microstructure evolution of SnAgCu, SnAg, SnBi and Ag-sintered solder, the modification mechanism summarized. Finally the problems that are difficult to break through in the field of solder nanocrystallization and the shortcomings are discussed, which can provide theoretical support for further research of nanoscale lead-free solders.
Key words:  electronic packaging    nanoscale solders    preparation technology    modification mechanism
出版日期:  2024-12-10      发布日期:  2024-12-10
ZTFLH:  TG42  
基金资助: 厦门理工学院高层次人才研究启动项目(YKJ22054R); 福建省“闽江学者”特聘教授人才项目
通讯作者:  * 张亮,福建省“闽江学者”特聘教授。2006年7月毕业于南昌航空大学获材料成型与控制工程专业学士学位,2011年5月毕业于南京航空航天大学获材料加工工程专业博士学位。2013年4月至2014年7月作为公派访问学者至美国加州大学洛杉矶分校电子薄膜实验室从事访问研修。主要从事钎焊材料与技术、电子封装技术、无铅互连与可靠性的研究工作,发表学术论文 100 余篇。zhangliang@jsnu.edu.cn   
作者简介:  黄玺,2017年6月毕业于吉林建筑大学,获得工学学士学位。现为厦门理工学院材料科学与工程学院硕士研究生,在张亮教授的指导下进行研究。目前主要研究领域为无铅钎料及互连技术。
引用本文:    
黄玺, 张亮, 王曦, 陈晨, 卢晓. 电子封装用纳米级无铅钎料的研究进展[J]. 材料导报, 2024, 38(23): 23080181-13.
HUANG Xi, ZHANG Liang, WANG Xi, CHEN Chen, LU Xiao. Research Progress of Nanoscale Lead-free Solder in Electronic Packaging. Materials Reports, 2024, 38(23): 23080181-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080181  或          http://www.mater-rep.com/CN/Y2024/V38/I23/23080181
1 Jiang N, Zhang L, Xiong M Y, et al. Materials Reports, 2019, 33(23), 3862 (in Chinese).
姜楠, 张亮, 熊明月, 等. 材料导报, 2019, 33(23), 3862.
2 Zhang L, Tu K N, Chen X W, et al. Sci Sin Tech, 2016, 46(8), 767 (in Chinese).
张亮, TU King Ning, 陈信文, 等. 中国科学: 技术科学, 2016, 46(8), 767.
3 Kim K S, Huh S H, Suganuma K. Microelectronics Reliability, 2003, 43(2), 259.
4 Umair Ali, Hamza Khan, Muhammad Aamir, et al. Metals, 2021, 11(7), 1077.
5 Dieter Vollath, Franz Dieter Fischer, David Holec. Beilstein Journal of Nanotechnology, 2018, 9, 2265.
6 Wu Z Y, Yang X L, Wang Z. Nanotechnology, 2019, 30(24), 245601.
7 Grégory Guisbiers, Rubén Mendoza-Cruz, Lourdes Bazán-Díaz, et al. ACS Nano, 2016, 10(1), 188.
8 Grégory Guisbiers, Rafael Mendoza-Perez. Nanotechnology, 2020, 31(29), 295702.
9 Sundaram D S, Yang V, Zarko V E. Combustion, Explosion, and Shock Waves, 2015, 51, 173.
10 Florent Calvo. Physical Chemistry Chemical Physics, 2015, 42(17), 27922.
11 Zhang W P, Zou C D, Zhao B G, et al. Transactions of Nonferrous Metals Society of China, 2014, 24(3), 750.
12 Zhang W P, Zhao B G, Zou C D, et al. Transactions of Nonferrous Metals Society of China, 2013, 23(6), 1668.
13 Gao Y L, Zhuravlev E, Zou C D, et al. Thermochimica Acta, 2009, 482(1-2), 1.
14 Chee S S, Lee J H. Materials Letters, 2012, 8, 53.
15 Jiang H, Robertson S, Zhou Z, et al. In: 2020 IEEE 8th electronics system-integration technology conference (ESTC), Tønsberg, Norway, 2020, pp.1.
16 Chen J H, Lo S C, Hsu S C, et al. Connection Application. Microma-chines, 2018, 9(12), 644.
17 Liu Q, Dai X F, Zhang T, et al. CIESC Journal, 2021, 72(2), 681(in Chinese).
刘庆, 戴小凤, 张 腾, 等. 化工学报, 2021, 72(2), 681.
18 Zhang X, Zhang W, Peng Y. Nanotechnology, 2022, 33, 305301.
19 Zhang X, Zhang H, Zheng X J, et al. Nanotechnology, 2019, 30, 195302.
20 Zhang X. Patent, CN2016111077025, China, 2018(in Chinese).
张悬. 专利, CN2016111077025, 中国, 2018.
21 Yang F, Hang C J, Tian Y H. Electronics & Packaging, 2021, 21(3), 12 (in Chinese).
杨帆, 杭春进, 田艳红. 电子与封装, 2021, 21(3), 12.
22 Wang S, Tian Y H. Materials Science & Technology, 2017, 25(5), 1(in Chinese).
王尚, 田艳红. 材料科学与工艺, 2017, 25(5), 1.
23 Zhang S Y, Xu X Y, Lin T, et al. Journal of Materials Science-Materials in electronics 2019, 30, 13855.
24 Tian Z, Li J P, Du Z G, et al. Sci-Tech Information Development & Economy, 1997, 2, 11(in Chinese).
田震, 李晋平, 杜志刚, 等. 科技情报开发与经济, 1997, 2, 11.
25 Liu C, Cheng H M. New Carbon Materials, 2001, 16(1), 67(in Chinese).
刘畅, 成会明. 新型炭材料, 2001, 16(1), 67.
26 Yang M, Han B B, Ma X, et al. Electronics Process Technology, 2014, 35(1), 1 (in Chinese).
杨明, 韩蓓蓓, 马鑫, 等. 电子工艺技术, 2014, 35(1), 1.
27 Xu H X, Zeiger B W, Kenneth S. Chemical Society Reviews, 2013, 42, 2555.
28 Kang Y K, Kim J, Park S K, et al. Journal of Nanoscience and Nano technology, 2020, 20(5), 3201.
29 Tang Y K, Xu J, Wei L F. Journal of Chongqing University (Natural Science Edition), 2005, 28(1), 5 (in Chinese).
唐一科, 许静, 韦立凡. 重庆大学学报(自然科学版), 2005, 28 (1), 5.
30 Wang Yan. Synthesis of Nano-SnAgCu solder by microemulsion method. Master's Thesis, China Jiliang University, China, 2019 (in Chinese).
王艳, 微乳法合成纳米SnAgCu焊料. 硕士学位论文, 中国计量大学, 2019.
31 Maqsood Ahmad Malik, Mohammad Younus Wani, Mohd Ali Hashim. Arabian Journal of Chemistry, 2012, 5 (4), 397.
32 Sang-Soo Chee, Jong-Hyun Lee. Electronic Materials Letters, 2012, 8, 587.
33 Goia D V. Journal of Materials Chemistry, 2004, 14(4), 451.
34 Murthy I N, Sivaprasad K, Rao J B. International Journal of Engineering, Science and Technology, 2018, 10(3), 17.
35 Barreto K, Lima K L, Manzato T, et al. ABM International Congress, Rio de Janeiro, RJ (Brazil), 2010, 18, 26.
36 Milea A, Gingu O, Preda S, et al. Journal of Alloys and Compounds, 2015, 629(25), 214.
37 Tseng K H, Lin Y S, Lin Y C, et al. Nanomaterials, 2020, 10(6), 1091.
38 Zou C D, Gao Y L, Yang B, et al. Journal of Electronic Materials, 2009, 38, 351.
39 Prem Ranjan, Duy Hieu Nguyen, Kenta Tanaka, et al. Applied Nanoscience, 2019, 9, 341.
40 Yu X, Di T T, Shen H Y. Chinese Journal of Materials Research, 2020, 34(4), 299 (in Chinese).
俞鑫, 邸彤彤, 沈杭燕. 材料研究学报, 2020, 34(4), 299.
41 Salomeh Tabatabaei, Ashavani Kumar, Haleh Ardebili, et al. Microelectronics Reliability, 2012, 52(11), 2685.
42 Qi M M, He X B, Liu S B, et al. Transactions of the China Welding Institution, 2022, 43(7), 97 (in Chinese).
齐苗苗, 贺晓斌, 刘双宝, 等. 焊接学报, 2022, 43(7), 97.
43 Cao Y, Liu P, Wei H M, et al. Journal of Materials Engineering, 2015(4), 79 (in Chinese).
曹洋, 刘平, 魏红梅, 等. 材料工程, 2015(4), 79.
44 Delsante S, Novakovic R, Borzone G. Journal of Alloys and Compounds, 2018, 747(30), 385.
45 Ali Roshanghias, Jan Vrestal, Andriy Yakymovych, et al. CALPHAD, 2015, 49, 101.
46 Yung K C, Law C M T, Lee C P, et al. Journal of Electronic Materials, 2012, 41, 313.
47 Li-Yin Hsiao, Jenq-Gong Duh. Journal of the electrochemical society, 2005, 105, 152.
48 Jiang H J, Moon K, Hua F, et al. Chemistry of Materials, 2007, 19(18), 4482.
49 Yang Ju, Takafumi Tasaka, Hayato Yamauchi, et al. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 2015, 21, 1849.
50 Frongia F, Pilloni M, Scano A, et al. Journal of Alloys and Compounds, 2015, 623 (25), 7.
51 Lin C Y, Mohanty U S, Chou J H, et al. Journal of Alloys and Compounds, 2010, 501(2), 204.
52 Koppes J P, Grossklaus K A, Muza A R, et al. Materials Science and Engineering B, 2012, 177(2), 197.
53 Li Junjie. Research on Cu based nanosolders for low temperature Cu-Cu bonding. Ph. D. thesis, Huazhong University of Science and Technology, China, 2017 (in Chinese).
李俊杰. 面向低温 Cu-Cu 键合的Cu基纳米焊料研究. 博士学位论文, 华中科技大学, 2017.
54 Ao Y W, Yang Y X, Yuan S L, et al. Materials Chemistry and Physics, 2007, 104(1), 158.
55 Jiang H J, Moon K, Wong C P. Microelectronics Reliability, 2013, 53(12), 1968.
56 Wang H S, Qiao X L, Chen J, et al. Materials Chemistry and Physics, 2005, 94(2-3), 449.
57 Chih Y W, Cheng W T. Materials Science and Engineering: B, 2007, 145(1-3), 67.
58 Qiu J, Zhou G Y, He W, et al. Electronic Components and Materials, 2021, 40(11), 1060 (in Chinese).
邱娟, 周国云, 何为, 等. 电子元件与材料, 2021, 40(11), 1060.
59 Wang B, Li W Y, Zhang S Y, et al. Journal of Materials Science, 2022, 57, 17533.
60 Wang M, Yuan M, Wang C M, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602(5), 125083.
61 Yang S, Rajathurai K, Fan G, et al. Journal of Alloys and Compounds, 2015, 626(25), 391.
62 Hao H, Ding M. Metals and Materials International, 2022, 28, 1981.
63 Wu M, Lv B L. Acta Electronica Sinica, 2016, 44(1), 222 (in Chinese).
吴敏, 吕柏林. 电子学报, 2016, 44(1), 222.
64 Arenas M F, He M, Acoff V L. Journal of Electronic Materials, 2006, 35, 1530.
65 Xu D X, Lei Y P, Xia Z D, et al. Journal of Electronic Materials, 2008, 37, 125.
66 Zeng G, Xue S, Zhang L. et al. Journal of Materials Science-Materials in Electronics, 2010, 21, 421.
67 Sopousek J, Vrestal J, Zemanova A, et al. Journal of Mining and Metallurgy Section B: Metallurgy, 2012, 48(3), 419.
68 Joonho Lee, Toshihiro Tanaka, Junggoo Lee, et al. CALPHAD, 2007, 31(1), 105.
69 Luca Pavan, Francesca Baletto, Rada Novakovic. Physical Chemistry Chemical Physics, 2015, 17, 28364.
70 Simona Delsante, Gabriella Borzone, Rada Novakovic. Physical Chemistry Chemical Physics, 2015, 17, 28387.
71 Kijoo Sim, Joonho Lee. Journal of Alloys and Compounds, 2014, 590(25), 140.
72 Joonho Lee, KiJoo Sim. CALPHAD, 2014, 44, 129.
73 Delsante S, Novakovic R, Borzone G. Journal of Alloys and Compounds, 2018, 747(30), 385.
74 Buffat P, Borel J P. Physical Review A, 1976, 13(6), 2287.
75 Kijoo Sim, Joonho Lee. Journal of Alloys and Compounds, 2014, 590(25), 140.
76 Li-Yin Hsiao, Jenq-Gong Duh. Journal of the electrochemical society, 2005, 105, 152.
77 Yang Ju, Takafumi Tasaka, Hayato Yamauchi, et al. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 2015, 21, 1849.
78 Fang Min gang, Tang Chu, Chen Yi ming, et al. Journal of Materials Science: Materials in Electronics, 2022, 33 (13), 10471.
79 Lu Xiao, Zhang Liang, Xi Wang, et al. Journal of Materials Science: Materials in Electronics, 2022, 33 (29), 22668.
80 Shen Yu an. JOM, DOI:10.1007/s11837-023-06079-9.
81 Jiang H, Moon K, Hua F, et al. Chemistry of Materials, 2007, 19(18), 4482.
82 Zou C D, Gao Y L, Yang B, et al. Journal of Materials Science-Materials in Electronics, 2010, 21, 868.
83 Tran Thai Bao, Yunkyum Kim, Joonho Lee, et al. Materials Transactions, 2010, 51(12), 2145.
84 Chukka R N, Telu S, Bhargava N R M R, et al. Journal of Materials Science: Materials in Electronics, 2011, 22, 281.
85 Ali Roshanghias, Jan Vrestal, Andriy Yakymovych et al. CALPHAD, 2015, 49, 101.
86 Ali Roshanghias, Andriy Yakymovych, Johannes Bernardi, et al. Nanoscale, 2015, 7, 5843.
87 Zou C D, Gao Y L, Yang B, et al. Journal of Materials Science: Materials in Electronics volume, 2012, 23, 2.
88 Gao Y L, Zou C D, Yang B, et al. Journal of Alloys and Compounds. 2009, 484(1-2), 777.
89 Mulugeta Abtew, Guna Selvaduray. Materials Science and Engineering: R: Reports, 2000, 27(5-6), 95.
90 Li Song. Wetting dynamics of solders in SMT. Ph. D. thesis, Huazhong University of Science and Technology, China, 2008 (in Chinese).
李松. 电子封装焊料润湿性的研究. 博士学位论文, 华中科技大学, 2006.
91 Voinov O V. Fluid Dynamics, 1976, 11, 714.
92 Voinov O V. Journal of Applied Mechanics and Technical Physics, 1999, 40, 86.
93 Cox R G. Journal of Fluid Mechanics, 1986, 168, 169.
94 Hwang J S. Solder Paste in Electronics Packaging, Springer, New York, 2012, pp.52.
95 Zhang Xuan. Synthesis, characterization and nanosoldering application of SnCu-based nanosolders. Ph. D. thesis, Lanzhou University, China, 2019 (in Chinese).
张悬. 锡铜系纳米焊料制备、表征及纳米焊接应用. 博士学位论文, 兰州大学, 2019.
96 Yin L M, Zhang Z G, Su Z L, et al. Journal of Electronic Materials, 2020, 49, 7394.
97 Ali Roshanghias, Golta Khatibi, Andriy Yakymovych, et al. Journal of Electronic Materials, 2016, 45, 4390.
98 Du W, Qiang J F, Yu Z H, et al. Materials Reports, 2023, 37(19), 22010113 (in Chinese).
杜伟, 强军锋, 余竹焕, 等. 材料导报, 2023, 37(19), 22010113.
99 Wu W Z, Yang F, Hu B, et al. Transactions of the China Welding Institution, 2021, 42(1), 83 (in Chinese).
吴炜祯, 杨帆, 胡博, 等. 焊接学报, 2021, 42(1), 83.
100 Yu Chunyu, Yang Dongsheng, Zhao Donglei, et al. In: 20th international conference on electronic packaging technology (ICEPT), Hong Kong, China, 2019, pp.1-4.
101 Kim J C, Ren Z Q, Yuksel A, et al. Journal of Electronic Packaging, 2021, 143(1), 10801.
102 Ancang Yang, Yonghua Duan, Caiju Li, et al. Intermetallics, 2022, 141, 107437.
103 Bai J G, Zhang Z Z, Calata J N, et al. IEEE Transactions on Components and Packaging Technologies, 2013, 29, 58.
104 Zhang Hong. Design andcharacterization of 1D Sn-based nanosolders & its applications. Ph. D. thesis, Lanzhou University, China, 2016 (in Chinese).
张宏. 纳米焊料的制备、微/纳表征及纳米焊接应用. 博士学位论文, 兰州大学, 2016.
105 Sharma M K, Qi D , Raymond D. AIChE Journal, 2016, 62 (2), 408.
106 Luc W, Collins C, Wang S, et al. Chemical Society Reviews, 2017, 139(5), 1885.
107 Zhang G P, Li M L, Wu X M, et al. Chinese Journal of Materials Research, 2014, 28(2), 81 (in Chinese).
张广平, 李孟林, 吴细毛, 等. 材料研究学报, 2014, 28(2), 81.
108 Jiang N, Zhang L, Xiong M Y, et al. Electronic Components and Materials, 2019, 38(8), 1 (in Chinese).
姜楠, 张亮, 熊明月, 等. 电子元件与材料, 2019, 38(8), 1.
109 Jing H, Heng C, Zhou M, et al. Journal of Electronic Materials, 2023, 52, 1216.
110 Wang Di. On resistance of nano-Ag-Pd paste toelectrochemical migration behavior at high temperatures. Master's Thesis, Tianjin University, China, 2017 (in Chinese).
王迪. 高温环境下纳米Ag-Pd焊膏的抗电化学迁移老化行为研究. 硕士学位论文, 天津大学, 2017.
111 Morisada Y, Nagaoka T, Fukusumi M, et al. Journal of Electronic Materials, 2010, 39, 1283.
112 Yu S P, Lin H J, Hon M H, et al. Journal of Materials Science: Materials in Electronics, 2000, 11, 461.
113 Zhang X D, Hu X D, Jiang X X, et al. Applied Physics A, 2018, 315, 124.
114 Hu X W, Qiu H Y, Jiang X X. Journal of Materials Science: Materials in Electronics, 2019, 30, 1907.
115 Ma Haoran, Anil Kunwar, Huang Ru, et al. Intermetallics, 2017, 90, 90.
116 Wu Min, Lv Bailin. Journal of Electronic Materials, 2016, 45, 38.
117 Roshanghias A, yakymovych A, Bernardi J, et al. Nanoscale, 2015, 7, 5843.
118 Zhang H, Zhang J W, Lan Q Q, et al. Nanotechnology, 2014, 25, 425301.
119 Frongia F, Pilloni M, Scano A, et al. Journal of Alloys and Compounds, 2015, 623 (25), 7.
120 Zhang S Y, Chu Y F, Li Z F, et al. Materials Reports, 2023, 37(15), 125 (in Chinese).
张墅野, 初远帆, 李振锋, 等. 材料导报, 2023, 37(15), 125.
121 Wang T, Wang C, Fang H, et al. In: 20th international conference on electronic packaging technology (ICEPT), Hong Kong, China, 2019, pp.1.
122 Sun Y, Lu X, Zhang Q, et al. In: 20th International Conference on Electronic Packaging Technology(ICEPT), Hong Kong, China, 2019, pp.1.
123 Yang W C, Hu S W, Zhu W B, et al. Transactions of the China Welding Institution, 2022, 43(11), 137(in Chinese).
杨婉春, 胡少伟, 祝温泊, 等. 焊接学报, 2022, 43(11), 137.
124 Dong H W, Zhang G X, Dong X, et al. Materials Reports, 2021, 35(S2), 341 (in Chinese).
董宏伟, 张冠星, 董显, 等. 材料导报, 2021, 35(S2), 341.
125 Xia W J, Feng X J, Hu Y, et al. Aerospace Materials & Technology, 2021, 51(6), 71 (in Chinese).
夏维娟, 冯晓晶, 胡媛, 等. 宇航材料工艺, 2021, 51(6), 71.
[1] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[2] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[3] 高颖, 陈萌, 王长龙. 改性钢渣-沥青混合料的性能及机理[J]. 材料导报, 2024, 38(2): 22100041-7.
[4] 李雪伍, 杜少盟, 闫佳洋, 石甜. 铝合金超疏水表面制备方法及防腐应用研究现状[J]. 材料导报, 2024, 38(19): 23030276-10.
[5] 张伟, 杨旭, 陈晓通, 任军强, 卢学峰. 纳米结构金属材料制备工艺及强化稳定方式研究进展[J]. 材料导报, 2023, 37(S1): 23010123-16.
[6] 符明君, 张勇, 张耿飞, 王凯, 贾致远, 王娜. 钼及钼合金改性硅化物高温抗氧化涂层研究现状[J]. 材料导报, 2023, 37(3): 21030219-8.
[7] 张永芳, 黎亮, 董丽虹, 王海斗, 王朋, 谢向宇. RFID传感标签制备工艺研究进展[J]. 材料导报, 2023, 37(22): 22030149-10.
[8] 刘军, 李振林, 张伟卓, 靳贺松, 邢锋. 工业固体废弃物材料制作冷粘结人造轻骨料的研究进展[J]. 材料导报, 2023, 37(18): 21090269-18.
[9] 宋承哲, 张冠华, 屈丰来, 冯良勇. 热塑性聚氨酯改性环氧树脂的制备与微观特性表征[J]. 材料导报, 2023, 37(10): 21060009-7.
[10] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[11] 郭涛, 李硕, 姚雅萱, 南波航, 徐桂英, 任玲玲. Bi-Te基薄膜热电材料的研究进展[J]. 材料导报, 2022, 36(4): 20040035-13.
[12] 薛新, 吴芳, 郑超, 魏雨函, 陈小超, 白鸿柏. 金属橡胶阻尼软夹芯结构材料研究进展[J]. 材料导报, 2022, 36(22): 22040029-11.
[13] 王博磊, 钟和香, 张晶, 李夺, 王鹤臻, 周广波, 赵思阳, 王新雨, 潘立卫. 陶瓷基整体式催化剂催化燃烧挥发性有机物的研究进展[J]. 材料导报, 2022, 36(14): 20120169-9.
[14] 燕飞, 李春林, 吕辉. 空心微珠增强铝基复合材料的制备工艺及性能研究进展[J]. 材料导报, 2021, 35(z2): 376-380.
[15] 刘哲, 刘勇, 高广志, 李奇贵, 包阳阳, 马凤森. Plackett-Burman设计结合响应面法优化可溶性微针的制备工艺[J]. 材料导报, 2021, 35(z2): 593-599.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed