Please wait a minute...
材料导报  2023, Vol. 37 Issue (3): 21030219-8    https://doi.org/10.11896/cldb.21030219
  金属与金属基复合材料 |
钼及钼合金改性硅化物高温抗氧化涂层研究现状
符明君1, 张勇1,*, 张耿飞1, 王凯1, 贾致远1, 王娜2
1 长安大学材料科学与工程学院,西安 710064
2 金堆城钼业股份有限公司技术中心,西安 710077
Research Progress of High Temperature Antioxidant Modified Silicide Coatings of Molybdenum and Its Alloys
FU Mingjun1, ZHANG Yong1,*, ZHANG Gengfei1, WANG Kai1, JIA Zhiyuan1, WANG Na2
1 School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
2 Technical Center, Jinduicheng Molybdenum Co., Ltd., Xi'an 710077, China
下载:  全 文 ( PDF ) ( 11380KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钼及钼合金因具有优异的高温力学性能而被广泛应用于电子工业、航空工业、核工业等领域,但这类材料在高温下易氧化的特性限制了其在工业生产中的应用。在钼及钼合金表面制备硅化物涂层是提高其抗氧化性能的主要措施,通过元素改性的方式可进一步提高硅化物涂层的抗氧化防护效果。本文结合近年来钼及钼合金改性硅化物高温抗氧化涂层的研究进展,详述了改性元素抑制涂层氧化损耗、阻止Si贫瘠区形成、提高涂层自愈性和降低涂层裂纹形成倾向四种抗氧化机理,介绍了常见的元素改性硅化物涂层体系及制备工艺,展望了今后钼及钼合金改性硅化物高温抗氧化涂层的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
符明君
张勇
张耿飞
王凯
贾致远
王娜
关键词:    硅化物涂层  元素改性  抗氧化  防护机理  制备工艺    
Abstract: Molybdenum and molybdenum alloys are widely used in the electronics industry, aviation industry, nuclear industry, and other fields due to their excellent high-temperature mechanical properties. However, the susceptibility to oxidation of these materials at high temperatures limits their application in industrial production. Preparing silicide coating on the surface of molybdenum and its alloy is the crucial measure to improve the oxidation resistance, and element modification can further improve the protective effect. In this paper, based on the recent research of modified silicide high-temperature anti-oxidation coatings of molybdenum and its alloys, four kinds of anti-oxidation mechanisms of modified element are described, which is, inhibiting the oxidation loss of coating, preventing the formation of Si barren zone, improving the self-healing of coating and reducing the formation tendency of the crack in the coating. The modified silicide coating system and preparation methods are introduced. The research direction of modified silicide high temperature anti-oxidation coatings of molybdenum and its alloys are prospected.
Key words:  molybdenum    silicide coating    element modification    anti-oxidation    protection mechanism    preparation method
出版日期:  2023-02-10      发布日期:  2023-02-23
ZTFLH:  TG146.4  
基金资助: 陕西省科技计划(2020ZDLGY12-07;2020GY-278);国家级大学生创新创业训练计划(S202010710151)
通讯作者:  *chdzhangyong@chd.edu.cn,张勇,2012 年 7 月毕业于中南大学,获工学博士学位。现为长安大学材料科学与工程学院副教授。主要研究方向为金属表面先进陶瓷涂层材料的制备与表征,在该领域共计发表学术论文 30 余篇,申请发明专利五项,先后主持包括国家自然科学基金项目、陕西省自然科学基金项目、国家重点实验室开放课题项目等在内的国家级、省部级项目 10 余项。   
作者简介:  符明君,2019 年 6 月毕业于长安大学,获学士学位。现为长安大学材料科学与工程学院硕士研究生,在郝建民教授、张勇副教授的指导下进行研究。目前主要研究领域为难熔金属抗氧化涂层。
引用本文:    
符明君, 张勇, 张耿飞, 王凯, 贾致远, 王娜. 钼及钼合金改性硅化物高温抗氧化涂层研究现状[J]. 材料导报, 2023, 37(3): 21030219-8.
FU Mingjun, ZHANG Yong, ZHANG Gengfei, WANG Kai, JIA Zhiyuan, WANG Na. Research Progress of High Temperature Antioxidant Modified Silicide Coatings of Molybdenum and Its Alloys. Materials Reports, 2023, 37(3): 21030219-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030219  或          http://www.mater-rep.com/CN/Y2023/V37/I3/21030219
1 Smolik G R, Petti D A, Schuetz S T. Journal of Nuclear Materials, 1999, 283(1), 1458.
2 Majumdar S, Kapoor R, Raveendra S, et al. Journal of Nuclear Mate-rials, 2009, 385(3), 545.
3 Majumdar S. Applied Surface Science, 2017, 414, 18.
4 Suzuki R O, Ishikawa M, Ono K. Journal of Alloys and Compounds, 2000, 306(1-2), 285.
5 Wang Y, Shi H Y, Yan J H, et al. Metals, 2018, 8(2), 93.
6 Deng X K, Zhang G J, Wang T, et al. Ceramics International, 2019, 45(1), 415.
7 Peng D Q, Bai X D, Zhou Q G, et al. Vacuum, 2004, 75(2), 121.
8 Chakraborty S P, Banerjee S, Sharma I G, et al. Journal of Nuclear Materials, 2012, 403(1-3), 152.
9 He H R, Xu J Q, Miao X, et al. Materials Reports A:Review Papers, 2019, 33(10), 3227 (in Chinese).
何浩然, 许俊强, 苗欣, 等. 材料导报:综述篇, 2019, 33(10), 3227.
10 Gatzen C, Smokovych I, Scheffler M, et al. Advanced Engineering Mate-rials, 2020, 23(4), 2001016.
11 Xing K Y, Wang X, Li Z X, et al. Materials Protection,2018, 51(12), 104 (in Chinese).
邢开源, 汪欣, 李争显, 等. 材料保护, 2018, 51(12), 104.
12 Liu W, Cao J, Zhu P F, et al. Materials Protection, 2018, 51(10), 101 (in Chinese).
刘伟, 曹俊, 朱鹏飞, 等. 材料保护, 2018, 51(10), 101.
13 Yang T, Du J H, Wang X, et al. Materials Protection, 2019, 52(7), 121 (in Chinese).
杨涛, 杜继红, 汪欣,等. 材料保护, 2019, 52(7), 121.
14 An G. China Molybdenum Industry, 2013, 37(2), 55 (in Chinese).
安耿. 中国钼业, 2013, 37(2), 55.
15 Lian J Q, Wu Y H, Zhang H A, et al. Powder Metallurgy Technology, 2016, 34(3), 228 (in Chinese).
廉冀琼, 吴艺辉, 张厚安,等. 粉末冶金技术, 2016, 34(3), 228.
16 Wang Y. Preparation and properties of Mo-based alloys oxidation resis-tance coatings at elevated temperature. Ph.D. Thesis, Central South University, China, 2014 (in Chinese).
汪异. 钼基合金高温抗氧化涂层的制备及其性能研究. 博士学位论文, 中南大学, 2014.
17 Wang C C, Li K Z, He D Y, et al. Ceramics International, 2020, 46(5), 6723.
18 Deng X K, Zhang G J, Wang T, et al. Journal of Alloys and Compounds, 2019, 807, 151693.
19 Wang Z Y, Guan Z F, Ning W, et al. Hot Working Technology, 2010, 39(8), 134 (in Chinese).
王智勇, 关志峰, 宁伟, 等. 热加工工艺, 2010, 39(8), 134.
20 Gao Y, Guo X P, Qiao Y Q, et al. Applied Surface Science, 2020, 504, 144477.
21 Zhang H A, Lv J X, Wu Y H, et al. Ceramics International, 2015, 41(10), 14890.
22 Zhai R X, Song P, Huang T, et al. Ceramics International, 2020, 47(7), 10137.
23 Zhang P, Guo X P, Zhang C Y, et al. International Journal of Refractory Metals & Hard Materials, 2017, 67, 32.
24 Wang Z W. Research on ZrO2-Glass oxidation resistant coating for molybdenum substrate. Master's Thesis, Donghua University, China, 2010 (in Chinese).
王智勇. 钼基体表面氧化锆-玻璃抗氧化涂层的研究. 硕士学位论文, 东华大学, 2010.
25 Wang C C, Li K Z, Shi X H, et al. Ceramics International, 2017, 43(14), 10848.
26 Schliephake D, Gombola C, Kauffmann A, et al. Oxidation of Metals, 2017, 88(3-4), 267.
27 Yoon J K, Lee J K, Byun J Y, et al. Surface & Coatings Technology, 2002, 160(1), 29.
28 Liu L, Zhang H Q, Lei H, et al. Ceramics International, 2020, 46(5), 5993.
29 Zhu L, Zhu Y S, Ren X R, et al. Surface & Coatings Technology, 2019, 375, 773.
30 Cockeram B V, Rapp R A. Materials Science forum, 1997, 251-254, 723.
31 Tian X D, Guo X P, Yin Z Q, et al. Transactions of Materials and Heat Treatment, 2014, 35(8), 171 (in Chinese).
田晓东, 郭喜平, 尹忠奇, 等. 材料热处理学报, 2014, 35(8), 171.
32 Akinc M, Meyer M K, Kramer M J, et al. Materials Science & Enginee-ring A, 1999, 261(1-2), 16.
33 Meyer M K, Kramer M J, Akinc M. Advanced Materials, 1996, 8(1), 85.
34 Meyer M K, Thom A J, Akinc M. Intermetallics, 1999, 7(2), 153.
35 Wang Y, Yan J H, Wang D Z. International Journal of Refractory Metals and Hard Materials, 2017, 68, 60.
36 Yoon J K, Kim G H, Byun J Y, et al. Surface & Coatings Technology, 2003, 165(1), 81.
37 Gu S Y, Zhang H A, Xie N P. Jounral of Xiamen University of Technology, 2011, 19(2), 18 (in Chinese).
古思勇, 张厚安, 谢能平. 厦门理工学院学报, 2011, 19(2), 18.
38 Majumdar S. Surface & Coatings Technology, 2012, 206(15), 3393.
39 Tang D Z. Research on the preparation and properties of coating on molybdenum. Master's Thesis, Central South University, China, 2014 (in Chinese).
汤德志. 钼合金表面涂层的制备及性能研究. 硕士学位论文, 中南大学, 2014.
40 Tian X D, Guo X P, Sun Z P, et al. Journal of Rare Earths, 2016, 34(9), 952.
41 Ouyang G Y, Ray P K, Thimmaiah S, et al. Applied Surface Science, 2019, 470, 289.
42 Zhang P, Guo X P, Ren X R, et al. Intermetallics, 2018, 93, 134.
43 Gu S Y, Zhang H A, Xie N P. Mining and Metallurgical Engineering, 2012, 32(5), 116 (in Chinese).
古思勇, 张厚安, 谢能平. 矿冶工程, 2012, 32(5), 116.
44 Cai Z Y, Wu Y H, Liu H Y, et al. Materials and Design, 2018, 155, 463.
45 Paul B, Kishor J, Majumdar S, et al. Surfaces and Interfaces, 2020, 18 100458.
46 Sun J, Fu Q G, Guo L P, et al. Materials and Design, 2016, 92, 602.
47 Nyutu E K, Kmetz M A, Suib S L. Surface & Coatings Technology, 2005, 200(12), 3980.
48 Yoon J K, Kim G H, Byun J Y, et al. Surface & Coatings Technology, 2003, 172(2-3), 176.
49 Cai Z Y, Liu S N, Xiao L R, et al. Surface & Coatings Technology, 2017, 324, 182.
50 Xiao L R, Zhang B, Cai Z Y, et al. Rare Metal Materials and Enginee-ring, 2018, 47(11), 3387 (in Chinese).
肖来荣, 张贝, 蔡圳阳, 等. 稀有金属材料与工程, 2018, 47(11), 3387.
51 Xiao L R, Rao B, Cai Z Y, et al. Ordnance Material Science and Engineering, 2015(6), 27 (in Chinese).
肖来荣, 饶博, 蔡圳阳, 等. 兵器材料科学与工程, 2015(6), 27.
52 Nomura N, Suzuki T, Yoshimi K, et al. Intermetallics, 2003, 11(7), 735.
53 Sun J, Fu Q G, Zhang G P, et al. Journal of Alloys and Compounds, 2018, 766, 95.
54 Li W, Fan J L, Fan Y, et al. Journal of Alloys and Compounds, 2018, 740, 711.
55 Liu W S, Ren X R, Chu H G, et al. Surface & Coatings Technology, 2021, 405, 126511.
56 Wang Q, Zhang L, Zhai L L, et al. International Journal of Refractory Metals & Hard Materials, 2019, 82, 340.
[1] 田娅, 马立文, 席晓丽. 电沉积法制备含钼合金的研究进展[J]. 材料导报, 2023, 37(3): 21030193-7.
[2] 邱玺, 高士鑫, 李权, 李垣明, 李文杰, 辛勇. 热管反应堆用钼铼合金的研究进展[J]. 材料导报, 2023, 37(2): 21020011-9.
[3] 赵帆, 周文健, 张志豪. 稀土镧对H13模具钢回火稳定性和抗氧化性的影响[J]. 材料导报, 2023, 37(2): 22070125-6.
[4] 王伟, 郭鸽鸽, 丁士杰, 程鹏, 高原, 王快社. 钛合金表面抗氧化玻璃涂层研究进展[J]. 材料导报, 2022, 36(Z1): 21110265-8.
[5] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[6] 连启会, 张行泉, 霍冀川, 吴浪, 张壮森. Nd2O3对钼酸钙-钙钛锆石硼硅酸盐玻璃陶瓷结构和性能的影响[J]. 材料导报, 2022, 36(7): 21020054-5.
[7] 丁亚文, 肖国庆, 丁冬海, 臧云飞, 陈建军. 晶体硅切割废料对Al2O3-SiC-C铁沟浇注料性能的影响[J]. 材料导报, 2022, 36(6): 21010084-5.
[8] 王南南, 李继文, 刘伟, 李武会, 张玉栋, 雷金坤, 徐流杰. 铝钼共掺杂氧化锌粉末的制备及光电性能研究[J]. 材料导报, 2022, 36(4): 20090212-7.
[9] 郭涛, 李硕, 姚雅萱, 南波航, 徐桂英, 任玲玲. Bi-Te基薄膜热电材料的研究进展[J]. 材料导报, 2022, 36(4): 20040035-13.
[10] 薛新, 吴芳, 郑超, 魏雨函, 陈小超, 白鸿柏. 金属橡胶阻尼软夹芯结构材料研究进展[J]. 材料导报, 2022, 36(22): 22040029-11.
[11] 刘虎, 齐哲, 艾莹珺, 周怡然, 杨金华, 赵文青, 赵春玲, 郎旭东, 贺宜红, 焦健. SiC涂层对熔渗SiCf/SiC复合材料高温服役性能的影响[J]. 材料导报, 2022, 36(21): 21070221-5.
[12] 王博磊, 钟和香, 张晶, 李夺, 王鹤臻, 周广波, 赵思阳, 王新雨, 潘立卫. 陶瓷基整体式催化剂催化燃烧挥发性有机物的研究进展[J]. 材料导报, 2022, 36(14): 20120169-9.
[13] 王斌, 孙顺平, 王洪金, 李小平, 雷卫宁. 电弧熔覆ZrO2颗粒增韧对硅化钼涂层的组织及力学性能的影响[J]. 材料导报, 2022, 36(13): 21040249-6.
[14] 李艳, 周增林, 何学良, 陈文帅, 惠志林. 轧制钼材制备过程织构演变的研究现状[J]. 材料导报, 2022, 36(12): 20090340-6.
[15] 李曼, 武丁胜, 魏安方, 刘锁, 赵玲玲, 王衡, 王克付, 凤权. 静电纺丝聚己内酯/明胶载姜黄素生物活性敷料的制备和性能[J]. 材料导报, 2022, 36(11): 21010039-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed