Please wait a minute...
材料导报  2022, Vol. 36 Issue (4): 20040035-13    https://doi.org/10.11896/cldb.20040035
  金属与金属基复合材料 |
Bi-Te基薄膜热电材料的研究进展
郭涛1,2, 李硕2,*, 姚雅萱2, 南波航1, 徐桂英1,*, 任玲玲2
1 北京科技大学材料科学与工程学院,北京 100083
2 中国计量科学研究院前沿计量科学中心,北京 100029
Progress of Bi-Te Based Thin Film Thermoelectric Materials
GUO Tao1,2, LI Shuo2,*, YAO Yaxuan2, NAN Bohang1, XU Guiying1,*, REN Lingling2
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
下载:  全 文 ( PDF ) ( 5882KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热电材料是一种能够实现热能与电能直接转换的功能材料,由于无法有效降低块体热电材料的热导率,其性能研究进展缓慢。自上世纪90年代初Hicks等提出了低维化能够显著提高热电材料性能的理论后,薄膜热电材料开始受到广泛关注。
低维化提高材料性能的原因主要是材料在低维化后能够产生量子限制效应,使得电子在被压缩维度的运动受到限制。首先,在费米能级附近,与Seebeck系数呈正相关的电子态密度会增大,导致低维热电材料的Seebeck系数相比块体材料显著增大。其次,与块体材料相比,薄膜材料存在更多能够散射声子的晶界,能有效降低晶格热导率。在这两种效应的共同作用下,材料的热电优值(ZT值)能够显著增大。
低维热电材料的研究初期主要是通过数学模型和数值计算,从理论上证明量子效应会影响材料的Seebeck系数和电导率,且能实现二者的独立控制,从而提高材料的ZT值。后期的实验数据证明,通过合适的热处理工艺能够有效降低薄膜材料的缺陷,提高其综合性能。因此,热处理工艺的改进对性能的提升也非常重要。热电材料性能的提升离不开制备工艺的进步。为了获得低维化的热电材料,多种薄膜材料制备工艺被用于样品的制备,且不同的制备工艺各有优缺点。Bi-Te基合金不仅可用于低温发电还可用于低温制冷,是目前应用最广泛的低温热电材料,虽然其块体状态下的热电性能研究已趋于完善,但其薄膜状态下热电性能的理论研究还相差甚远,因此Bi-Te基低温薄膜热电材料成为研究热点。
本文介绍了国内外采用不同制备工艺生长Bi-Te基热电薄膜材料的发展状况以及热电性能测试方法,提出了在目前发展薄膜热电材料时需要重点关注的方面,并对低维热电材料的发展方向进行了阐述。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭涛
李硕
姚雅萱
南波航
徐桂英
任玲玲
关键词:  Bi-Te基合金  薄膜热电材料  薄膜材料制备工艺  薄膜热电材料性能测试    
Abstract: Thermoelectric materials (TEs) are a kind of functional material which can realize the direct conversion between thermal energy and electric energy. It is hard for bulk thermoelectric materials to improve the properties because the thermal conductivity of them cannot be reduced effectively. In the early 1990s, Hicks and other researchers put forward the theory that low-dimensionalization could greatly improve the perfor-mance of TEs, and then the research of thermoelectric thin films has been widely concerned.
The reason for low-dimensional materials having higher performance is that they can produce quantum confinement effect, which limits the motion of electrons in the compressed dimension. Firstly, the electron density of states with a positive correlation to Seebeck coefficient increases in the vicinity of the Fermi level, and thus the Seebeck coefficient of the low-dimensional thermoelectric materials increases significantly, compared with the bulk materials. Secondly, thin film materials have more grain boundaries that can scatter the phonon, which will reduce the lattice thermal conductivity effectively. As a result, the thermoelectric figure of merit (ZT value) of the film materials can be improved remarkably through the combined action of the two effects.
At the beginning of the research on low-dimensional thermoelectric materials, it is proved that quantum effect can influence Seebeck coefficient and conductivity of the materials, which can control them independently to improve the ZT value of the materials through mathematical modeling and calculation. The later experiments confirm that the proper heat treatment process of thin films can reduce the defects effectively and improve the comprehensive properties. Therefore, the heat treatment and preparation process of thin films are very important to improve the performance of TEs. In order to obtain low-dimensional TEs, thin film materials preparation methods have been applied and have their own advantages and disadvantages. Bi-Te based TEs have become the most widely used low temperature thermoelectric materials at present because it can be not only applied in low temperature power generation but also in low temperature cooling. Although the properties in the bulk state have been improved, the theoretical research of thermoelectric properties in the thin film state is not enough. As a result, Bi-Te based TEs have become a hot spot in the research of low temperature thin film thermoelectric materials.
In this paper, the methods for thermoelectric properties measurement and the development of different preparation processes of Bi-Te based thermoelectric thin films at home and abroad are introduced. The research aspects which need to be focused on the development of thin film materials are put forward, and the development direction of low-dimensional TEs is also described.
Key words:  Bi-Te based alloy    thin film thermoelectric materials    preparation technique of thin film materials    thermoelectric performance test of thin film materials
出版日期:  2022-02-25      发布日期:  2022-02-28
ZTFLH:  TN37  
基金资助: 国家重点研发计划项目—国家质量基础的共性技术研究与应用专项(2017YFF0204706)
通讯作者:  guiyingxu@126.com; lishuo@nim.ac.cn   
作者简介:  郭涛,北京科技大学硕士研究生,在中国计量科学研究院联合培养,在李硕老师指导下主要从事热电材料Seebeck系数计量研究。
徐桂英,北京科技大学材料科学与工程学院教授、博士研究生导师。1983年本科、1995年博士毕业于东北大学,1995—1998年在清华大学做博士后研究。中国材料研究学会热电材料及应用分会理事,是多个国内外期刊的审稿人,包括:Applied Phy-sics Letter, Journal of Alloy and Compound, Journal of Electronic Materials, 《东北大学学报》,《稀有金属》,《硅酸盐学报》,《材料导报》,《人工晶体学报》等。
李硕,2007—2017年,本硕博毕业于中国地质大学。2014—2016年在美国俄亥俄州立大学作为交换生攻读博士学位。目前为中国计量科学研究院助理研究员,主要从事材料计量研究。
引用本文:    
郭涛, 李硕, 姚雅萱, 南波航, 徐桂英, 任玲玲. Bi-Te基薄膜热电材料的研究进展[J]. 材料导报, 2022, 36(4): 20040035-13.
GUO Tao, LI Shuo, YAO Yaxuan, NAN Bohang, XU Guiying, REN Lingling. Progress of Bi-Te Based Thin Film Thermoelectric Materials. Materials Reports, 2022, 36(4): 20040035-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040035  或          http://www.mater-rep.com/CN/Y2022/V36/I4/20040035
1 Da Silva L W, Kaviany M, Uher C. Journal of Applied Physics, 2005, 97(11), 114903.
2 Peranio N, Eibl O, Nurnus J. Journal of Applied Physics, 2006, 100(11), 114306.
3 Venkatasubramanian R, Siivola E, Colpitts T, et al. Nature, 2001, 413(6856), 597.
4 Xu G Y, Ren P, Lin T, et al. Journal of Applied Physics, 2018, 123(1), 15101.
5 Pichard C R, Tellier C R, Tosser A J. Journal of Physics F, Metal Phy-sics, 1980, 10(9), 2009.
6 Septier A, Machet C J D P. Revue de Physique Appliquee,1983,18(8),507.
7 Chen L D, Liu R H, Shi X. Thermoelectric materials and devices, Science Press, China, 2018, pp. 34(in Chinese).
陈立东,刘睿恒,史迅. 热电材料与器件,科学出版社,2018,pp.34.
8 Zebarjadi M, Liao B, Esfarjani K, et al. Advanced Materials, 2013, 25(11), 1577.
9 Hinterleitner B, Knapp I, Poneder M, et al. Nature,2019,576(7785), 85.
10 Cheng L. Thermoelectric transport properties of several bismuth-based bulk and low-dimensional materials. Master's Thesis, Wuhan University, China, 2016(in Chinese).
程龙. 若干Bi基块体及低维材料电热输运性质研究. 硕士学位论文, 武汉大学, 2016.
11 Chen G. Physical Review B: Condensed Matter and Materials Physics, 1998, 57(23), 14958.
12 Chen G, Neagu M. Applied Physics Letters, 1997, 71(19), 2761.
13 Shi Y W, Qiao G J, Jin Z H. Rare Metal Materials and Engineering, 2005, 34(1), 12(in Chinese).
石尧文,乔冠军,金志浩. 稀有金属材料与工程, 2005, 34(1), 12.
14 Dresselhaus M S, Dresselhaus G, Sun X, et al. Physics of the Solid State, 1999, 41(5), 679.
15 Xie H Q. Rare Metal Materials and Engineering, 2010, 39(3), 556(in Chinese).
谢华清. 稀有金属材料与工程, 2010, 39(3), 556.
16 Mahan G, Sales B, Sharp J. Physics Today, 1997, 50(3), 42.
17 Yang D D. Study on Thermoelectric properties of Bi2Te3-based thin films. Master's Thesis, Huazhong University of Science & Technology, China, 2017(in Chinese).
杨冬冬. Bi2Te3基薄膜材料热电性能研究. 硕士学位论文, 华中科技大学, 2017.
18 Zou S F. Study on the thermoelectric and infrared performances of Bi2Te3-based thin films. Master's Thesis, University of Electronic Science and Technology of China, China, 2015(in Chinese).
邹世凤. Bi2Te3基薄膜热电性质与红外性质研究. 硕士学位论文, 电子科技大学, 2015.
19 G O, van Cakenberghe. Journal of Physics of Chemistry Solid, 1959, 11(1), 310.
20 Fan P, Zheng Z H, Zhang D P, et al. Chinese Journal of Vacuum Science and Technology, 2012, 32(8), 700(in Chinese).
范平,郑壮豪,张东平,等. 真空科学与技术学报,2012,32(8),700.
21 Seo J, Lee C, Park K. Materials Science and Engineering, 1998, 54(3), 135.
22 Alexeev A N, Krasovitsky D M, Petrov S I, et al. Semiconductors, 2015, 49(1), 92.
23 Song L Y, Tang L B, Li Y H, et al. Infrared Technology, 2009, 31(11), 628(in Chinese).
宋立媛,唐利斌,李艳辉,等. 红外技术, 2009, 31(11), 628.
24 Chen G H, Deng J X. New electronic thin film materials, Chemical Industry Press, China, 2002, pp. 31(in Chinese).
陈光华,邓金祥. 新型电子薄膜材料,化学工业出版社,2002,pp.31.
25 Yu M F, Yang J R, Wang S L, et al. Chinese Journal of Semiconductors, 1999, 20(5), 378(in Chinese).
于梅芳,杨建荣,王善力,等. 半导体学报, 1999, 20(5), 378.
26 Fan P, Zheng Z H, Liang G X, et al. Journal of Shenzhen University Science and Engineering, 2011, 28(1), 84(in Chinese).
范平,郑壮豪,梁广兴,等. 深圳大学学报理工版, 2011, 28(1), 84.
27 Zhou H H, Tan B M, Zhang J X, et al. Advanced Semiconductor Manufacturing Technologies, 2012, 37(2), 126(in Chinese).
周欢欢,谭柏梅,张建新,等. 半导体先进制造技术,2012,37(2),126.
28 Das V D, Mallik R C. Materials Research Bulletin,2002,37(12),1961.
29 Hossain M Z, Rumyantsev S L, Shahil K M F, et al. ACS Nano, 2011, 5(4), 2657.
30 Teweldebrhan D, Goyal V, Rahman M, et al. Applied Physics Letters, 2010, 96(5), 53107.
31 Shahil K M F, Hossain M Z, Goyal V, et al. Journal of Applied Physics, 2012, 111(5), 54305.
32 Ding Z, Bux S K, King D J, et al. Journal of Materials Chemistry, 2009, 19(17), 2588.
33 Mu W D. Fabrication of Bi2Te3-Based thermoelectric thin films and study on the performances. Ph.D. Thesis, National University of Defense Technology, China, 2009(in Chinese).
穆武第. 碲化铋基热电薄膜制备及其热电性能研究. 博士学位论文, 国防科学技术大学, 2009.
34 Oh M, Jeon S, Jeon H, et al. Journal of Electronic Materials, 2012, 41(1), 60.
35 Deng Y, Zhang Z, Wang Y, et al. Journal of Nanoparticle Research, 2012, 14(4), 1.
36 Lee H, Park H S, Han S, et al. Thermochimica Acta, 2012, 542, 57.
37 Li Q, Tan B M, Zhang J X, et al. Jounal of the Chinese Ceramic Society, 2016, 44(1), 95(in Chinese).
李秦,谭柏梅,张建新,等. 硅酸盐学报, 2016, 44(1), 95.
38 Rogacheva E I, Budnik A V, Sipatov A Y, et al. Applied Physics Letters, 2015, 106, 53103.
39 Liu J S. Ion beam deposition film technology and application, National Defense Industry Press, China, 2003,pp.28(in Chinese).
刘金声. 离子束沉积薄膜技术及应用, 国防工业出版社,2003,pp.28.
40 Piresa A L, Cruza I F, Ferreira-Teixeiraa S, et al. Materials Today: Proceedings, 2017, 4(12), 12383.
41 Zheng Z, Fan P, Luo J, et al. Thin Solid Films, 2014, 562, 181.
42 Peranio N, Winkler M, Bessas D, et al. Journal of Alloys and Compounds, 2012, 521, 163.
43 Krenzer B, Hanisch-Blicharski A, Schneider P, et al. Physical Review B, 2009, 80(2), 024307.
44 Liu W, Endicott L, Uher C, et al. Journal of Crystal Growth, 2015, 410(7), 23.
45 Harrison S E, Li S, Huo Y, et al. Applied Physics Letters, 2013, 102(17), 171906.
46 Wang K, Liu Y, Wang W, et al. Applied Physics Letters, 2013, 103(3), 31605.
47 Shen C. Preparation of bismuth telluride Nano-materials by MBE and the thermo-electrical measurement of thin films. Master's Thesis, Shanghai University, China, 2013(in Chinese).
沈超. 碲化铋纳米材料的分子束外延法制备与薄膜热电性能测试. 硕士学位论文, 上海大学, 2013.
48 Nagao T, Doi T, Sekiguchi T, et al. Japanese Journal of Applied Physics, 2000, 39(7S), 4567.
49 Wu Y, Lin Z, Tian Z, et al. Materials Science in Semiconductor Proces-sing, 2016, 46, 17.
50 Obara H, Higomo S, Ohta M, et al. Japanese Journal of Applied Physics, 2009, 48(8), 85506.
51 Le P H, Liao C, Luo C W, et al. Journal of Alloys and Compounds, 2014, 615, 546.
52 Yu Z, Wang X, Du Y, et al. Journal of Crystal Growth,2013,362,247.
53 Hao G L, Qi X, Zhong J. Bismuth-Contain Compounds,2013,186,281.
54 Jung Y C, Kim J H, Suh S H, et al. Journal of Crystal Growth, 2006, 290(2), 441.
55 Wang K, Zhong D H, Zhang Y, et al. Journal of Shengyang Ligong University, 2019, 38(4), 85(in Chinese).
王凯,仲德晗,张扬,等. 沈阳理工大学学报, 2019, 38(4), 85.
56 Takahashi M, Kojima M, Sato S, et al. Journal of Applied Physics, 2004, 96(10), 5582.
57 Rashid M M, Cho K H, Chung G. Applied Surface Science,2013,279,23.
58 Zhu Y B. Investigations on the electrochemical electrochemical preparation, Characterization and deposition mechanism of Bi Bi2Te3 based p-type thermoelectric materials. Ph.D. Thesis, Tianjin University, China, 2011(in Chinese).
朱艳兵. Bi2Te3掺杂p型温差电材料的电化学制备、表征及沉积机理研究. 博士学位论文, 天津大学, 2011.
59 Wang W, Liao X, Zhu Y B, et al. In: Academic meeting of 2011 natio-nal electronic electroplating and surface treatment. Shanghai, 2011, pp.157(in Chinese).
王为,廖夏,朱艳兵,等. 2011年全国电子电镀及表面处理学术交流会. 上海, 2011, pp.157.
60 Li J Q. Electrodeposition of bismuth telluride-based thermoelectric film materials and its application in isotope batteries. Master's Thesis, Nanjing University of Aeronautics and Astronautics,China,2019(in Chinese).
李俊琴. 碲化铋基热电薄膜材料电化学制备及其在同位素电池中的应用. 硕士学位论文, 南京航空航天大学, 2019.
61 Wang X. Preparation and thermoelectric properties of Bi2Te3 thin films. Master's Thesis, University of Electronic Science and Technology of China,China, 2014(in Chinese).
汪兴. Bi2Te3薄膜的制备与热电性能研究. 硕士学位论文, 电子科技大学, 2014.
62 Gao J L. Study and optimization on the transport properties of thermoelectric materials in selenides and telluride. Ph.D. Thesis, University of Science & Technology Beijing, China, 2018(in Chinese).
高君玲. 硒碲化物热电材料的输运性能研究与优化. 博士学位论文, 北京科技大学, 2018.
63 Xu B, Lou C L, Wang J, et al. Journal of China University of Metrology, 2016, 27(3), 258(in Chinese).
徐博, 楼春兰, 王建, 等. 中国计量大学学报, 2016, 27(3), 258.
64 Boffoué O, A. Jacquot, Dauscher A, et al. Review of Scientific Instruments, 2005, 76(5), 53907.
65 Yang Q S, Po B R. Advanced heat transfer, Shanghai Jiaotong University Press, China, 2001, pp.123(in Chinese).
杨强生,蒲保荣. 高等传热学, 上海交通大学出版社,2001,pp.123.
66 Mahan G D, Bartkowiak M. Applied Physics Letters, 1999, 74(7), 953.
67 Lowhorn N D, Wong-Ng W, Lu Z, et al. Journal of Materials Research, 2011, 26(15), 1983.
68 Li W W, Zhao X B, Zhu T J, et al. Journal of Functional Materials, 2002, 33(3), 237(in Chinese).
李伟文,赵新兵,朱铁军,等. 功能材料, 2002, 33(3), 237.
69 Wang Y, Zhang S M, Deng Y. Journal of Materials Chemistry A, Mate-rials for Energy and Sustainability, 2016, 4(9), 3554.
70 Wang Y, Zhang S, Deng Y. Materials Letters, 2016, 164, 132.
71 Van Reenen S, Kemerink M. Organic Electronics,2014,15(10),2250.
72 Agarwal K, Kaushik V, Varandani D, et al. Journal of Alloys and Compounds, 2016, 681, 394.
73 He X M, Zhang T, Chen F, et al. Progress in Chemistry, 2018, 30(4), 439(in Chinese).
何新民,张婷,陈飞,等. 化学进展, 2018, 30(4), 439.
[1] 董源, 徐桂英. GeTe热电材料的研究和进展[J]. 材料导报, 2022, 36(3): 20080307-10.
[2] 赵鸣, 李天宇, 石钰. 铈镧复合氧化物对ZnVCrO陶瓷显微结构及压敏性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 120-124.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed