Please wait a minute...
材料导报  2022, Vol. 36 Issue (14): 20120169-9    https://doi.org/10.11896/cldb.20120169
  无机非金属及其复合材料 |
陶瓷基整体式催化剂催化燃烧挥发性有机物的研究进展
王博磊, 钟和香, 张晶, 李夺, 王鹤臻, 周广波, 赵思阳, 王新雨, 潘立卫
大连大学环境与化学工程学院,辽宁 大连 116622
Research Progress of Ceramic-based Monolithic Catalysts for the Catalytic Combustion of VOCs
WANG Bolei, ZHONG Hexiang, ZHANG Jing, LI Duo, WANG Hezhen, ZHOU Guangbo, ZHAO Siyang, WANG Xinyu, PAN Liwei
College of Environmental & Chemical Engineering, Dalian University, Dalian 116622, Liaoning, China
下载:  全 文 ( PDF ) ( 2601KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 工业制造业大量排放的挥发性有机化合物(VOCs)会对大气环境和人体健康造成严重危害,其排放已受到国家的严格控制。催化燃烧法可实现VOCs的低温完全转化,降低能耗且避免了不完全燃烧造成的二次污染,成为目前最具应用前景的VOCs消除途径之一。
催化燃烧技术的应用依托于高性能催化剂的研发,蜂窝陶瓷结构的整体式催化剂能够克服传统颗粒催化剂床层压降和温度梯度大、反应物在表面分布不均等缺点,具有机械强度高、床层压降低、传质效率高等优点,在高空速、大通量等苛刻的废气处理环境中发挥着不可替代的作用。目前对于VOCs催化燃烧整体式催化剂的研究重点主要集中在两方面,一是通过不同金属间的掺杂改性设计出具备良好晶型结构的催化剂来提高其催化活性和降低生产成本;二是开发简便高效的催化剂制备工艺来保证在苛刻反应条件下活性组分与基体的结合强度并提高催化剂的耐磨损性。
本文对用于VOCs催化燃烧的陶瓷基整体式催化剂及其制备工艺的最新研究进展进行了分类综述,并探究了VOCs催化燃烧的基本反应机理。结合当前的发展现状及不足,对其未来的发展趋势进行了展望,以期为研制高活性、高稳定性、强通用性且低成本的VOCs催化燃烧催化剂提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王博磊
钟和香
张晶
李夺
王鹤臻
周广波
赵思阳
王新雨
潘立卫
关键词:  挥发性有机物  催化燃烧  陶瓷基体  整体式催化剂  制备工艺    
Abstract: Alarge number of volatile organic compounds (VOCs), which cause serious harm to atmosphere and human health, are discharged into the environment by manufacturing industries. Their emissions have been strictly controlled by the state in recent years. Catalytic combustion realizes complete transformation of VOCs at low temperatures by significantly reducing the reaction activation energy and avoiding secondary pollution due to incomplete combustion. Therefore, it has become one of the most promising methods currently used to eliminate VOCs.
The application of catalytic combustion technology depends on the use of high-performance catalysts. A monolithic catalyst with honeycomb ceramic structure can overcome the disadvantages of traditional particle catalysts, such as large drop in bed pressure, significant temperature gra-dient and uneven distribution of reactants on the surface. On the contrary, it has high mechanical strength, lower bed pressure and efficient mass transfer, playing a crucial role in achieving high airspeed, large flux and other harsh waste gas treatment. At present, the research on the monolithic catalysts for the catalytic combustion of VOCs is mainly focused on two aspects. I. Design of catalysts with good crystal structure by doping different metals to improve catalytic activity and reduce production costs. II. Development of a simple and efficient preparation process to ensure the binding strength of active components and substrate under harsh reaction conditions and enhance the wear resistance.
Recent progress in research on ceramic-based monolithic catalysts for the catalytic combustion of VOCs and their preparation process are reviewed in this paper. Furthermore, the basic mechanism of the catalytic combustion of VOCs is explored. Based on the current state of research and shortcomings, the future development trend of the catalyst is prospected to provide reference for the synthesis of catalysts with high activity, good stability, strong universality and low cost for catalytic combustion of VOCs.
Key words:  volatile organic compounds    catalytic combustion    ceramic substrate    monolithic catalyst    preparation process
发布日期:  2022-07-26
ZTFLH:  O643  
基金资助: 国家重点研发计划(2020YFB1506301);大连市杰出青年科技项目(2018RJ09)
通讯作者:  panliwei@dlu.edu.cn   
作者简介:  王博磊,2018年毕业于烟台大学,获得理学学士学位。现为大连大学环境与化学工程学院在读硕士研究生,在潘立卫教授指导下进行研究。目前主要研究方向为陶瓷基整体式催化剂的制备及在废气处理中的应用。
潘立卫,大连大学环境与化学工程学院教授、博士研究生导师。1996年7月本科毕业于大连理工大学化工学院,2005年3月在中国科学院大连化学物理研究所化学工程专业取得博士学位。主要从事催化反应器工程领域的研究,包括催化剂工程设计、多反应耦合集成反应器和系统集成等方面的研究。
引用本文:    
王博磊, 钟和香, 张晶, 李夺, 王鹤臻, 周广波, 赵思阳, 王新雨, 潘立卫. 陶瓷基整体式催化剂催化燃烧挥发性有机物的研究进展[J]. 材料导报, 2022, 36(14): 20120169-9.
WANG Bolei, ZHONG Hexiang, ZHANG Jing, LI Duo, WANG Hezhen, ZHOU Guangbo, ZHAO Siyang, WANG Xinyu, PAN Liwei. Research Progress of Ceramic-based Monolithic Catalysts for the Catalytic Combustion of VOCs. Materials Reports, 2022, 36(14): 20120169-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120169  或          http://www.mater-rep.com/CN/Y2022/V36/I14/20120169
1 Zeng X T, Tong Y F, Cui L, et al. Journal of Environmental Management, 2017, 197, 507.
2 Rezlescu N, Rezlescu E, Dorin Popa P, et al. Ceramics International, 2015, 41(3), 4430.
3 Zhou G, He X, Liu S, et al. Journal of Industrial and Engineering Chemistry, 2015, 21, 932.
4 Zhao Q, Ge Y L, Ji N, et al. Progress in Chemistry, 2016, 28(12), 1847(in Chinese).
赵倩, 葛云丽, 纪娜, 等.化学进展, 2016, 28(12), 1847.
5 Tang W, Wu X, Li S, et al. Catalysis Communications, 2014, 56, 134.
6 Nijhuis T A, Beers A E W, Vergunst T, et al. Catalysis Reviews, 2001, 43(4), 345.
7 Avila P, Montes M, Miró E E. Chemical Engineering Journal, 2005, 109(1-3), 11.
8 Yashnik S A, Denisov S P, Danchenko N M, et al. Applied Catalysis B:Environmental, 2016, 185, 322.
9 Velinova R, Todorova S, Drenchev B. Chemical Engineering Journal, 2019, 368, 865.
10 Zhang Z, Jiang Z, Shangguan W. Catalysis Today, 2016, 264, 270.
11 Arzamendi G, Ferrero R, Pierna A R. Industrial & Engineering Chemi-stry Research, 2007, 46, 9037.
12 Hu C Q. Chemical Engineering Journal, 2011, 168, 1185.
13 Abdullah A Z, Bakar M Z A, Bhatia S. Industrial & Engineering Chemistry Research, 2003, 42, 6059.
14 Akram S, Wang Z, Chen L, et al. Catalysis Communications, 2016, 73, 123.
15 Manta C M, Bozga G, Bercaru G. Chemical Engineering & Technology, 2012, 35, 2147.
16 Chen H B, Yan Y, Shao Y, et al. Alcheringa: An Australasian Journal of Palaeontology, 2015, 61, 620.
17 Li H, Chen H, Yao M F, et al. Industrial & Engineering Chemistry Research, 2013, 52, 686.
18 Li B, Chen Y, Li L, et al. Journal of Molecular Catalysis A, Chemical, 2016, 415, 160.
19 Li Y, Li Y F, Wu Q Q. Chemical Industry and Engineering Progress, 2011, 30(4), 759(in Chinese).
李宇, 李永峰, 吴青青.化工进展, 2011, 30(4), 759.
20 Li Y F, Liu Z C, Mai R J, et al. Journal of Fuel Chemistry and Techno-logy, 2011, 39(9), 712(in Chinese).
李永峰, 刘祖超, 麦荣坚, 等.燃料化学学报, 2011, 39(9), 712.
21 Chen X, Zhao Z, Zhou Y, et al. Applied Catalysis A: General, 2018, 566, 190.
22 Li W, Ye H, Liu G, et al. Chinese Journal of Catalysis, 2018, 39, 946.
23 Zhu A, Zhou Y, Wang Y, et al. Journal of Rare Earths, 2018, 36(12), 1272.
24 He Z F, He Z R, Liu T, et al. Journal of Functional Materials, 2013, 44(23), 3421(in Chinese).
贺站锋, 何展荣, 刘涛, 等.功能材料, 2013, 44(23), 3421.
25 Yang P, Yang S S, Shi Z N, et al. Applied Catalysis B: Environmental, 2015, 162, 227.
26 Lu J, Na Y, Qin Z J, et al. Catalysis Today, 2013, 216, 71.
27 Tang Q, Guo Y L, Zhan W C, et al. CIESC Journal, 2019, 70(3), 944(in Chinese).
唐铨, 郭杨龙, 詹望成, 等.化工学报, 2019, 70(3), 944.
28 Su X W, Jin L Y, Lu J Q. Journal of Industrial and Engineering Chemistry, 2009, 15(5), 683.
29 Chen W Y, Zhu L, He J, et al. Chemical Journal of Chinese Universities, 2017, 38(4), 606(in Chinese).
陈文亚, 朱丽, 何军, 等.高等学校化学学报, 2017, 38(4), 606.
30 Zuo S, Sun X, Lv N, et al. ACS Applied Materials & Interfaces, 2014, 6(15), 11988.
31 Guo Y, Zhang S, Zhu J, et al. Applied Surface Science, 2017, 416, 358.
32 Hu Y J, Wang Z Q, Cheng X X, et al. Chemical Industry and Engineering Progress,2018, 37(1), 319(in Chinese).
户英杰, 王志强, 程星星, 等.化工进展, 2018, 37(1), 319.
33 Esteban C L, Andrés P M, Jorge S, et al. Journal of Rare Earths, 2016, 34(7), 675.
34 Cuo Z, Deng Y, Li W, et al. Applied Surface Science, 2018, 456, 594.
35 Zhang X, Wu D. Ceramics International, 2016, 42(15), 16563.
36 Kan J, Deng L, Li B, et al. Applied Catalysis A: General, 2017, 530, 21.
37 Li B, Xu X L, Niu Q, et al. Journal of Nanjing Tech University(Natural Science Edition), 2014, 36(4), 1(in Chinese).
李兵, 徐校良, 牛茜, 等.南京工业大学学报(自然科学版), 2014, 36(4), 1.
38 Guan F, Lu H F, Huang H F, et al. Journal of Chemical Engineering of Chinese Universities, 2008, 22(6), 954(in Chinese).
官芳, 卢晗锋, 黄海凤, 等.高等化学工程学报, 2008, 22(6), 954.
39 Sun X, Wu D. ChemistrySelect, 2019, 4(19), 5503.
40 Zang M, Zhao C, Wang Y, et al. Applied Surface Science, 2019, 483, 355.
41 Lu Y Q. Preparation of La1-xSrxMnO3/γ-Al2O3/cordierite catalysts and its catalytic combustion activity for VOCs. Master's Thesis, Beijing University of Technology, China, 2017(in Chinese).
路永强. 堇青石蜂窝陶瓷负载La1-xSrxMnO3/γ-Al2O3催化剂的制备及其对VOCs催化性能的研究. 硕士学位论文, 北京工业大学, 2017.
42 Chen Y W, Li B, Niu Q, et al. Environmental Science and Pollution Research International, 2016, 23(15), 15193.
43 Picasso G, Kou R S, Zavala C, et al. Materials Research Bulletin, 2015, 70, 621.
44 Henkes A E, Chris B J, Sra A K, et al. ChemInform,2006,37(14),567.
45 Rezlescu N, Rezlescu E, Popa P D, et al. Materials Chemistry and Phy-sics, 2016, 182,332.
46 Yu D, Peng C, Wang L Y, et al. Scientia Sinica(Chimica), 2020, 50(12),1816(in Chinese).
于迪, 彭超, 王斓懿, 等.中国科学:化学, 2020, 50(12),1816.
47 Wang S, Ren Z, Song W, et al. Catalysis Today, 2015, 258, 549.
48 Barbato P S, Sarli V D, Landi G, et al. Chemical Engineering Journal, 2015, 259, 381.
49 Jabłońska M, Palkovits R. Catalysis Science & Technology,2019, 9, 2057.
50 Wang H, Liu J, Zhao Z, et al. Catalysis Today, 2012, 184, 288.
51 Bai J H, Guo L C. Journal of Wuhan University of Technology Materials Science Edition, 2006, 21, 100.
52 Shigapov A N, Graham G W, Maccabe R W, et al. Applied Catalysis A: General, 1999, 182(1), 137.
53 Lu G Z, Lei Z, Zhao H Y, et al. Clean Coal Technology, 2014, 20(6), 104(in Chinese).
路贵增, 雷泽, 赵昊鹰, 等.洁净煤技术, 2014, 20(6), 104.
54 Jiang L, Chu G W, Liu Y Z, et al. Chemical Engineering and Processing & Process Intensification, 2020, 150,107882.
55 Wang A Q, Liang D B, Xu C H, et al. Chinese Journal of Catalysis, 2000, 21(1), 19(in Chinese).
王爱琴, 梁东白, 徐长海, 等.催化学报, 2000, 21(1), 19.
56 He Z F, Shao Q, Shen N Y. Acta Petrolei Sinica (Petroleum Processing Section), 2001(3), 83(in Chinese).
贺振富, 邵潜, 沈宁元.石油学报(石油加工), 2001(3), 83.
57 Sun H C, Wang Y Q, Zhao C C, et al. Materials Reports B: Research Papers, 2016, 30(12), 32(in Chinese).
孙浩程, 王永强, 赵朝成, 等.材料导报:研究篇,2016,30(12),32.
58 Tian J M, Bai X, Li J, et al. Journal of Inner Mongolia University of Technology (Natural Science Edition),2006,25(3),210(in Chinese).
田建民, 白雪, 李健, 等.内蒙古工业大学学报:自然科学版, 2006, 25(3), 210.
59 Wang X H, Zhou Y, Li H Y. Materials Reports B: Research Papers, 2014, 28(2), 126(in Chinese).
王学海, 周勇, 李海英.材料导报:研究篇, 2014, 28(2), 126.
60 Aguero F N, Morales M R, Duran F G, et al. Chemical Engineering & Technology, 2013, 36, 1749.
61 Wang L Q, Wang D X, Zhang X Y. Industrial Catalysis, 2002, 10(3), 52(in Chinese).
王丽琼, 王大祥, 张兴燕.工业催化, 2002, 10(3), 52.
62 Shi W, He A D, Chen X Y, et al. Journal of Fudan University(Natural Science), 2003, 42(4), 424(in Chinese).
史雯, 何阿弟, 陈晓银, 等.复旦学报(自然科学版), 2003, 42(4), 424.
63 Liu F Y, Jia Z G, Huang J J. Petrochemical Technology, 2013, 42(9), 950(in Chinese).
刘翻艳, 贾志刚, 黄敬敬.石油化工, 2013, 42(9), 950.
64 Agrafiotis C, Tseteskou A. Journal of Materials Science, 2000, 35(4), 951.
65 Tian J Y, Lu J S, Wu H, et al. Journal of Chemical Engineering of Chinese Universities, 2010, 24(1), 167(in Chinese).
田久英, 卢菊生, 吴宏, 等.高校化学工程学报, 2010, 24(1), 167.
66 Kucharczyk B, Tylus W, Kępiński L. Applied Catalysis B: Environmental, 2004, 49(1),27.
67 Liu J X, Zhao Z, Xu C M, et al. Chinese Journal of Catalysis, 2019, 40(10),1438.
68 Luo M F, He M, Xie Y L, et al. Applied Catalysis B, Environmental, 2006, 69(3),213.
69 Deng L, Li B, Kan J W, et al. Chemical Industry and Engineering Progress, 2017, 36(1), 210(in Chinese).
邓磊, 李兵, 阚家伟, 等.化工进展, 2017, 36(1), 210.
70 Ning K, Bo L L, Liu S, et al. Journal of Fuel Chemistry and Technology, 2020, 48(9), 1140(in Chinese).
宁轲, 卜龙利, 刘双, 等.燃料化学学报, 2020, 48(9), 1140.
71 Wang T, Yang S, Sun K. Ceramics International, 2011, 37(2), 621.
72 Chen Y, He J H, Tian H, et al. Chemistry, 2015, 78(3), 231(in Chinese).
陈莹, 贺军辉, 田华, 等.化学通报, 2015, 78(3), 231.
73 Na X H, Yu L, Sun M, et al. Chinese Journal of Catalysis, 2010, 31(8), 1019(in Chinese).
那秀辉, 余林, 孙明, 等.催化学报, 2010, 31(8), 1019.
74 Fan C, Luo L, Wu Z W, et al. Journal of Shaanxi Normal University(Natural Science Edition), 2019, 47(1), 94(in Chinese).
范超, 罗莉, 吴志伟, 等.陕西师范大学学报(自然科学版), 2019, 47(1), 94.
[1] 汤倩茜, 陈栋航, 张春杰, 王钢, 郭利民. 沸石分子筛用于挥发性有机物吸附的研究进展[J]. 材料导报, 2022, 36(Z1): 21050144-9.
[2] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[3] 郭涛, 李硕, 姚雅萱, 南波航, 徐桂英, 任玲玲. Bi-Te基薄膜热电材料的研究进展[J]. 材料导报, 2022, 36(4): 20040035-13.
[4] 燕飞, 李春林, 吕辉. 空心微珠增强铝基复合材料的制备工艺及性能研究进展[J]. 材料导报, 2021, 35(z2): 376-380.
[5] 刘哲, 刘勇, 高广志, 李奇贵, 包阳阳, 马凤森. Plackett-Burman设计结合响应面法优化可溶性微针的制备工艺[J]. 材料导报, 2021, 35(z2): 593-599.
[6] 张猛, 花福安, 赵巍. 基于机器学习的高熵合金生成相预测研究[J]. 材料导报, 2021, 35(Z1): 331-335.
[7] 杨博, 余金山, 顾全超, 王洪磊, 周新贵. SiCf/SiC复合材料制备研究进展[J]. 材料导报, 2021, 35(3): 3050-3056.
[8] 陈浩伟, 余先纯, 张传艳, 李銮玉, 孙德林, 郝晓峰. 木质素基模板炭的制备及电化学性能[J]. 材料导报, 2021, 35(24): 24164-24171.
[9] 骆吉源, 肖国庆, 丁冬海, 种小川, 任金翠. 二硼化锆粉体合成研究现状与展望[J]. 材料导报, 2021, 35(21): 21159-21168.
[10] 陈运灿, 闫二虎, 狄翀博, 王金华, 黄浩然, 王豪, 刘威, 徐芬, 孙立贤. 5B族(Nb,V和Ta)合金渗氢膜的研究进展[J]. 材料导报, 2020, 34(21): 21001-21011.
[11] 李萌, 杨成博, 张静, 郑开宏. 轻质高熵合金的研究现状[J]. 材料导报, 2020, 34(21): 21125-21134.
[12] 冯勇超, 于庆君, 易红宏, 唐晓龙, 黄永海, 张媛媛, 庄瑞杰. MFI型分子筛在VOCs去除领域的研究进展[J]. 材料导报, 2020, 34(17): 17089-17098.
[13] 李凯, 高文明, 杜莹, 李箭. 直接CH4固体氧化物燃料电池金属支撑体研究现状与发展[J]. 材料导报, 2020, 34(17): 17149-17154.
[14] 庄瑞杰, 于庆君, 唐晓龙, 易红宏, 黄永海, 张媛媛, 冯勇超. 介孔硅基分子筛吸附去除挥发性有机化合物的研究进展[J]. 材料导报, 2020, 34(15): 15013-15020.
[15] 任秦博,王景平,杨立,李翔,王学川. 用于电阻式柔性应变传感器的导电聚合物复合材料研究进展[J]. 材料导报, 2020, 34(1): 1080-1094.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed