Please wait a minute...
材料导报  2021, Vol. 35 Issue (21): 21159-21168    https://doi.org/10.11896/cldb.20070327
  无机非金属及其复合材料 |
二硼化锆粉体合成研究现状与展望
骆吉源, 肖国庆, 丁冬海, 种小川, 任金翠
西安建筑科技大学材料科学与工程学院,西安 710055
Research Status and Prospect of Synthesis of Zirconium Diboride Powders
LUO Jiyuan, XIAO Guoqing, DING Donghai, CHONG Xiaochuan, REN Jincui
College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 11872KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 二硼化锆(ZrB2)陶瓷的优异性能使其作为航空航天推进系统结构材料的潜力巨大。然而,其分子中的强共价键和低晶界扩散速率使ZrB2烧结致密化困难,且ZrB2陶瓷固有脆性大、对裂纹较为敏感、服役可靠性不高,限制了ZrB2的应用。通过合成性质优良的粉体促进ZrB2陶瓷烧结致密化、改善其固有脆性具有重要现实意义。
减小粉体粒径、降低氧杂质含量是促进ZrB2烧结致密化的关键。此外,高长径比一维粉体可有效提高基体的强韧性。因此,超细、低氧含量和一维ZrB2粉体合成是近年来ZrB2粉体合成领域的研究热点。
合成反应原理及制备工艺决定了ZrB2粉体的性质。超细粉体的合成关键在于降低反应温度,优化现有反应体系具有一定成效但限制较大,通过新反应体系可在低温下合成粒径为25~35 nm的超细粉体;ZrB2中氧杂质主要是未完全反应的ZrO2,使反应物适度过量可有效提高反应进行程度,氧杂质含量可降至0.14%(质量分数);原位合成的一维ZrB2粉体长径比不高,高长径比纤维仍主要通过静电纺丝工艺制备,但纤维产率较低,因此原位合成高长径比ZrB2粉体仍是一大挑战。
本文分析了元素合成、碳热还原、硼热还原、硼/碳热还原、镁热还原及铝热还原合成ZrB2粉体的反应过程与原理;总结了自蔓延高温合成法、熔盐法、机械合金化、溶胶凝胶法和静电纺丝法等制备工艺的优缺点;综述了ZrB2在超细、低氧含量及一维粉体合成三个方向的最新进展;分析了在ZrB2粉体合成过程中影响粒径、氧杂质含量的因素及晶体生长机制,并对未来ZrB2粉体合成研究进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
骆吉源
肖国庆
丁冬海
种小川
任金翠
关键词:  二硼化锆  合成原理  制备工艺  发展方向    
Abstract: Zirconium diboride (ZrB2) ceramics have been proved to be a promising structural material in aerospace propulsion system owing to its remarkable properties. However, the application of ZrB2 is hindered to a great extent due to the difficulty to be densified, sensitivity to cracks and poor service reliability because of its strong covalent bonds in the molecules and low grain boundary diffusion rate. Hence, it is important to synthesize high-quality ZrB2 powders with excellent properties to promote its sintering densification and overcome its inherent brittleness.
The activity of ZrB2 powders is influenced by the particle size and oxygen impurity content. In addition, with the incorporation of powders with high aspect ratio, a higher strength and toughness can be achieved for ZrB2 ceramics. Thus, the synthesis of ultra-fine, low-oxygen content and one-dimensional ZrB2 powders has attracted plenty of interest.
Thermodynamic and kinetic principles in synthesis as well as preparation technologies have great effects on the quality of ZrB2 powders. It is essential to lower the reaction temperature in the synthesis of ultra-fine ZrB2 powders. Optimization of existing reaction systems is effective but there are many limitations. Nano ZrB2 powders with particle size 25—35 nm can be obtained under a lower temperature in a new system. The oxygen impurity in ZrB2 powders is mainly the unreacted ZrO2 and it can be effectively reduced to 0.14%(mass fraction) by introducing excessive reactants appropriately. In-situ synthesizing ZrB2 powders with high aspect ratio is still a challenge and continuous fibers are still mainly prepared by electrospinning.
The processes and reaction mechanisms of ZrB2 powders synthesis were reviewed, including element synthesis, carbothermal reduction, borothermal reduction, boro/carbothermal reduction, magnesiothermic reduction and aluminothermic reduction. The advantages and disadvantages of self-propagating high temperature synthesis, molten salt method, mechanical alloying, sol-gel method and electrospinning were overviewed. The latest developments of ZrB2 powders synthesis were introduced from the aspects of ultra-fine, low-oxygen content and one-dimensional powders preparation. The factors affecting the particle size and oxygen content as well as the crystal growth mechanism were analyzed. Finally, the studies on the synthesis of ZrB2 powders were prospected.
Key words:  zirconium diboride    synthesis mechanism    preparation technology    development direction
               出版日期:  2021-11-10      发布日期:  2021-11-30
ZTFLH:  TQ174.75  
基金资助: 国家自然科学基金(51502236;51572212;51772236);陕西省重点研发计划项目(2018ZDXM-GY-128)
通讯作者:  xiaoguoqing@xauat.edu.cn   
作者简介:  骆吉源,2018年毕业于西安建筑科技大学,获得工学学士学位。现为西安建筑科技大学材料科学与工程学院博士研究生,在肖国庆教授指导下进行研究。目前主要研究领域为模板法制备二硼化锆纤维。
肖国庆,西安建筑科技大学材料科学与工程学院教授,博士研究生导师,2005年获西安交通大学材料科学与工程专业博士学位,2005年晋升教授,2008.10-2009.10英国谢菲尔德大学访问学者。主要从事结构功能一体化陶瓷基复合材料、低碳耐火材料研究,以第一作者及合作者在国内外期刊发表学术论文100多篇。目前主持国家级科研项目2项、省部级科研项目5项,受邀担任Composites A、Ceramics International、International Journal of the Applied Ceramic Technology等10余种国际期刊审稿人。
引用本文:    
骆吉源, 肖国庆, 丁冬海, 种小川, 任金翠. 二硼化锆粉体合成研究现状与展望[J]. 材料导报, 2021, 35(21): 21159-21168.
LUO Jiyuan, XIAO Guoqing, DING Donghai, CHONG Xiaochuan, REN Jincui. Research Status and Prospect of Synthesis of Zirconium Diboride Powders. Materials Reports, 2021, 35(21): 21159-21168.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070327  或          http://www.mater-rep.com/CN/Y2021/V35/I21/21159
1 Fahrenholtz W G, Hilmas G E. Scripta Materialia, 2017,100(129), 94.
2 Golla B R, Mukhopadhyay A, Basu B, et al. Progress in Materials Science, 2020,111,100651.
3 Fahrenholtz W G, Hilmas G E, Chamberlain A L, et al.Journal of Materials Science, 2004, 39(19), 5951.
4 Neuman E W, Hilmas G E, Fahrenholtz W G, et al. Journal of the Ame-rican Ceramic Society, 2013, 96(1), 47.
5 Neuman E W, Hilmas G E, Fahrenholtz W G. Materials Science and Engineering: A, 2016, 100(670), 196.
6 Neuman E W, Hilmas G E, Fahrenholtz W G. Journal of the European Ceramic Society, 2015, 35(2), 463.
7 Levine S R, Opila E J, Lee W E, et al, Halbig M C, et al. Journal of the European Ceramic Society, 2002, 22(14-15), 2757.
8 Fahrenholtz W G, Hilmas G E. International Materials Reviews, 2012, 57(1), 61.
9 Voitovich B F, Pugach É A.Soviet Powder Metallurgy and Metal Cera-mics, 1975, 14(3), 231.
10 Zhang G J, Ni D W, Zou J, et al. Journal of the European Ceramic Society, 2018, 38(2), 371.
11 Sonber J K, Suri A K. Advances in Applied Ceramics, 2011,110(6),321.
12 Fahrenholtz W G, Wuchina E J, Lee W E, et al. In: Ultra-high temperature ceramics: materials for extreme environment applications. Library of Congress Cataloging-in-Publication, USA, 2014, pp. 168.
13 Fahrenholtz W G, Hilmas G E, Talmy I G, et al. Journal of the American Ceramic Society, 2007, 90(5), 1347.
14 Silvestroni L, Sciti D, Zoli L, et al. Renewable Energy, 2019, 133, 1257.
15 Neuman E W, Hilmas G E, Fahrenholtz W G.Journal of the American Ceramic Society, 2016, 99(2), 597.
16 Zhang H, Jayaseelan D D, Bogomol I, et al. Journal of Alloys and Compounds, 2019, 785, 958.
17 Medve D, Balko J, Sedlák R, et al. International Journal of Refractory Metals and Hard Materials, 2019, 81, 214.
18 Zhang L, Wei C, Li S, et al. Ceramics International, 2019, 45(5), 6503.
19 Zhang D, Hu P, Dong S, et al. Journal of Alloys and Compounds, 2019, 789, 755.
20 Li F, Xu Z, Zhao K, et al. Materials Letters, 2018, 230, 249.
21 Zimmermann J W, Hilmas G E, Fahrenholtz W G, et al. Journal of the American Ceramic Society, 2008, 91(5), 1405.
22 Zhang G, Zhao Y X, Zhu J, et al. International Journal of Modern Phy-sics B, 2018, 32(16), 1850200.
23 Cheng T, Li W, Fang D. AIAA Journal, 2013, 51(4), 840.
24 Wuchina E, Opila E, Opeka M, et al. The Electrochemical Society Interface, 2007, 16(4), 30.
25 Patel M, Singh V, Reddy J J, et al. Scripta Materialia, 2013, 69(5), 370.
26 amurlu H E, Maglia F. Journal of the European Ceramic Society, 2009, 29(8), 1501.
27 Gocmez H, Tuncer M, Bogomol I. International Journal of Refractory Me-tals and Hard Materials, 2019, 78, 127.
28 Khoeini M, Nemati A, Zakeri M, et al. International Journal of Refractory Metals and Hard Materials, 2019, 81, 189.
29 Chen Z K, Liang D F, Deng L J, et al. Electronic Components and Materials, 2017, 36(7), 28(in Chinese).
陈志科, 梁迪飞, 邓龙江, 等.电子元件与材料, 2017, 36(7), 28.
30 Li R, Zhang Y, Lou H, et al. Journal of Sol-Gel Science and Technology, 2011, 58(2), 580.
31 Liu H, Yang J, Tang M G, et al. Heat Treatment of Metals, 2019, 44(2), 14(in Chinese).
刘海, 杨静, 唐明国, 等.金属热处理, 2019, 44(2), 14.
32 Mishra S K, Das S, Das S K, et al. Journal of Materials Research, 2000, 15(11), 2499.
33 Guo W M, Zhang G J. Journal of the American Ceramic Society, 2009, 92(1), 264.
34 Yin Q H, Qi X, Biberger M A, et al. U.S. Patent,US8992820,2015
35 Wiederhorn S M. Annual Review of Materials Science, 1984, 14(1), 373.
36 Deng Y, Li W, Wang R, et al. Composite Structures, 2016, 140, 534.
37 Budiansky B, Hutchinson J W, Evans A G. Journal of the Mechanics and Physics of Solids, 1986, 34(2), 167.
38 Zou J, Ma H B, Chen L, et al. Scripta Materialia, 2019, 164, 105.
39 Fahrenholtz W G, Binner J, Zou J. Journal of Materials Research, 2016, 31(18), 2757.
40 Chamberlain A L, Fahrenholtz W G, Hilmas G E. Journal of the Euro-pean Ceramic Society, 2009, 29(16), 3401.
41 Lee D, Vlassak J J, Zhao K. Nano Letters, 2015, 15(10), 6553.
42 Amirsardari Z, Aghdam R M, Salavati-Niasari M, et al. Materials and Manufacturing Processes, 2016, 31(2), 134.
43 Li F, Cao Y, Liu J, et al. Ceramics International, 2017, 43(10), 7743.
44 Che X P, Zhu S Z, Yang L J, et al. Advanced Materials Research, 2010, 105-106,213.
45 Baris M, Simsek T, Simsek T, et al. Advanced Powder Technology, 2018, 29(10), 2440.
46 Yang B, Li J, Zhao B, et al. Powder Technology, 2014, 256, 522.
47 Ji H, Yang M, Li M, et al. Advanced Powder Technology, 2014, 25(3), 910.
48 Guo W M, Tan D W, Zhang Z L, et al. Ceramics International, 2016, 42(13), 15087.
49 Ran S, Van der Biest O, Vleugels J. Journal of the American Ceramic Society, 2010, 93(6), 1586.
50 Qiu H Y, Guo W M, Zou J, et al. Powder Technology, 2012, 217, 462.
51 Jung E Y, Kim J H, Jung S H, et al. Journal of Alloys and Compounds, 2012, 538, 164.
52 Radev D D, Klissurski D. Journal of Materials Synthesis and Processing, 2001, 9(3), 131.
53 Zheng Y T, Li H B, Xu Z H, et al. Rare Metals, 2013, 32(4), 408.
54 Jalaly M, Bafghi M S, Tamizifar M, et al. Journal of Alloys and Compounds, 2014, 588, 36.
55 Xiao G Q, Fu Y L, Zhang Z W, et al. Ceramics International, 2015, 41(4), 5790.
56 Xiao G Q, Zhang W, Ding D H, et al. Interceram-International Ceramic Review, 2016, 65(7), 35.
57 Radklaochotsatain N, Niyomwas S, Chanadee T. Ceramics International, 2020,46(11),18842.
58 Murthy S S N, Patel M, Reddy J J, et al. Transactions of the Indian Institute of Metals, 2018, 71(1), 57.
59 Yuan H, Li J, Shen Q, et al. Journal of Wuhan University of Technology-Materials Science Edition, 2015, 30(3), 512.
60 Cao X W, Li Y F, Wang Q. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2012, 39(4), 58(in Chinese).
曹晓伟, 李友芬, 王琦.北京化工大学学报 (自然科学版), 2012, 39(4), 58.
61 Tan C, Duan H J, Wang J K, et al. Materials Reports, 2018, 31(8), 109(in Chinese).
谭操, 段红娟, 王军凯, 等.材料导报, 2018, 31(8), 109.
62 Zhang S, Khangkhamano M, Zhang H, et al. Journal of the American Ceramic Society, 2014, 97(6), 1686.
63 Bai L, Jin H, Lu C, et al. Ceramics International, 2015, 41(6), 7312.
64 Dhanglert N, Niyomwas S, Chanadee T. Russian Journal of Non-Ferrous Metals, 2018, 59(4), 440.
65 Yan C, Liu R, Zhang C, et al. Advanced Powder Technology, 2016, 27(2), 711.
66 Rogachev A S, Mukasyan A S. Combustion for Material Synthesis, CRC Press,USA ,2014.
67 Kurbatkina V V, Patsera E I, Levashov E A, et al. Journal of the Euro-pean Ceramic Society, 2018, 38(4), 1118.
68 Levashov E A, Mukasyan A S, Rogachev A S, et al. International Mate-rials Reviews, 2017, 62(4), 203.
69 Merzhanov A G, Borovinskaya I P.Combustion Science and Technology, 1975, 10(5-6), 195.
70 Fang Z, Wang H, Fu Z Y. Journal of the Chinese Ceramic Society, 2004, 32(8), 755(in Chinese).
方舟, 王皓, 傅正义.硅酸盐学报, 2004, 32(8), 755.
71 Lee D, Sim G D, Xiao K, et al. The Journal of Physical Chemistry C, 2014, 118(36), 21192.
72 Liu D, Wen T, Ye B, et al. Journal of the American Ceramic Society, 2019, 102(6), 3763.
73 Wen T, Ning S, Liu D, et al. Journal of the American Ceramic Society, 2019, 102(8), 4956.
74 Bao K, Wen Y, Khangkhamano M, et al. Journal of the American Cera-mic Society, 2017, 100(5), 2266.
75 Bao K, Massey J, Huang J T, et al. In:Proceedings of the 41st International Conference on Advanced Ceramics and Composites: Ceramic Engineering and Science Proceedings. https:∥doi.org/10.1002/9781119474746.ch12.
76 La P Q, Han S B, Lu X F, et al. Journal of the Inorgnic Materials, 2014, 29(2), 191.
77 Suryanarayana C. Journal of Alloys and Compounds, 2011, 509, S229.
78 Hu C F, Sakka Y, Uchikoshi T, et al. Key Engineering Materials, 2010, 434-435,165.
79 Khananra A K, Pathak L C, Midhra S K, et al. Journal of the Materials Science Letters, 2003, 22(17), 1189.
80 Seetala N V, Reedy O, Matson L E, et al. Microscopy and Microanalysis, 2016, 22(S3), 1870.
81 Chen J P, Shi Y X, Zhang F, et al. Machinery, 2004(3), 52(in Chinese).
陈君平, 施雨湘, 张凡, 等.机械, 2004(3), 52.
82 Wu W W, Zhang G J, Sakka Y. Journal of Asian Ceramic Societies, 2013, 1(3), 304.
83 Yang B Y, Li J P, Wang T Y, et al. Journal of Inorganic Materials, 2014, 29(7), 717(in Chinese).
杨碧云, 李军平, 汪庭语, 等.无机材料学报, 2014, 29(7), 717.
84 Yang L J, Zhu S Z, Xu Q, et al. Frontiers of Materials Science in China, 2010, 4(3), 285.
85 Hench L L, West J K. Chemical Reviews, 1990, 90(1), 33.
86 Wang B N, Duan Y B, Hu J, et al. Advanced Materials Research, 2014, 1058,3.
87 Yang N R, Yu G Y. Bulletin of the Chinese Ceramic Society, 1993(2), 56(in Chinese).
杨南如, 余桂郁.硅酸盐通报, 1993(2), 56.
88 Liu Y, Geng R, Cui Y, et al. Materials & Design, 2017, 128, 80.
89 Deng Q H, Ding Z H, Shen X F, et al. Key Engineering Materials, 2016, 697,49.
90 Tao X Y, Zhou S X, Xiang Z M, et al. Journal of Alloys and Compounds, 2017, 697, 318.
91 Dai Y, Liu W, Formo E, et al. Polymers for Advanced Technologies, 2011, 22(3), 326.
92 Cordova S, Shafirovich E. Journal of Materials Science, 2018, 53(19), 13600.
93 Zhang W, Xiao G Q, Ding D H. Materials Reports, 2018, 31(24), 125(in Chinese).
张薇, 肖国庆, 丁冬海.材料导报, 2018, 31(24), 125.
94 Liu J, Huang Z, Huo C, et al. Journal of the American Ceramic Society, 2016, 99(9), 2895.
95 Yin T, Jiang B, Su Z, et al.Journal of Sol-Gel Science and Technology, 2018, 85(1), 41.
96 Cao Y N, Du S, Zhang H J, et al. Journal of the Chinese Ceramic Society, 2014, 42(10), 1229(in Chinese).
曹迎楠, 杜爽, 张海军, 等. 硅酸盐学报, 2014, 42(10), 1229.
97 Ji G, Ji H, Li M, et al. Journal of Sol-Gel Science and Technology, 2014, 69(1), 114.
98 Li F, Kang Z, Huang X, et al. Chemical Engineering Journal, 2013, 234, 184.
99 Zoli L, Costa A L, Sciti D. Scripta Materialia, 2015, 109, 100.
100 Morito H, Koshiji K, Yamane H.Journal of Asian Ceramic Societies, 2017, 5(4), 479.
101 Asl M S, Namini A S, Kakroudi M G.Ceramics International, 2016, 42(4), 5375.
102 Guo W M, Zhang G J.Journal of the American Ceramic Society, 2011, 94(11), 3702.
103 Guo W M, Wu L X, Sun S K, et al.Journal of the American Ceramic Society, 2017, 100(2), 524.
104 Xie B, Ma L, Gao D, et al.Ceramics International, 2018, 44(8), 8795.
105 Guo W M, TaD W, Zeng L Y, et al. Ceramics International, 2018, 44(4), 4473.
106 Liu D, Chu Y, Ye B, et al.CrystEngComm, 2018, 20(47), 7637.
107 Bai L, Jin H, Lu C, et al.Ceramics International, 2015, 41(6), 7312.
108 Burlakova A G, Kravchenko S E, Domashnev I A, et al.Russian Journal of General Chemistry, 2017, 87(5), 906.
109 Gui T, Wang X M, Yang L, et al.Rare Metals, 2018, 37(12), 1076.
110 An G S, Han J S, Hur J U, et al. Ceramics International, 2017, 43(8), 5896.
111 Yadav K K, Guchhait S K, Hussain C M, et al.Journal of Solid State Electrochemistry, 2019, 23(12), 3243.
112 Feng H L, Huang Q Z, Su Z A. Materials Science and Engineering of Powder Metallurgy, 2017, 22(2), 212 (in Chinese).
冯慧丽, 黄启忠, 苏哲安.粉末冶金材料科学与工程, 2017, 22(2), 212.
113 Bai L, Ni S, Jin H, et al.International Journal of Applied Ceramic Technology, 2018, 15(2), 508.
114 Bai L, Wang Y, Chen H, et al.Crystal Research and Technology, 2016, 51(7), 428.
115 Han J S, Lee H S, Shin J R, et al.International Journal of Nanotechnology, 2018, 15(6-7), 518.
116 Zhang G J, Ni D W, Zou J, et al.Journal of the European Ceramic Society, 2018, 38(2), 371.
117 Ding Z, Deng Q, Shi D, et al.Journal of the American Ceramic Society, 2014, 97(10), 3037.
118 Zhang Y, Li R, Jiang Y, et al.Journal of Solid State Chemistry, 2011, 184(8), 2047.
119 Liu H, Qiu H Y, Guo W, et al.Advances in Applied Ceramics, 2015, 114(8), 418.
120 Fan Z, Guo Z X, Cantor B.Composites Part A: Applied Science and Ma-nufacturing, 1997, 28(2), 131.
121 Hu C, Zou J, Huang Q, et al. Journal of the American Ceramic Society, 2012, 95(1), 85.
122 Walker L S, Corral E L.Journal of the American Ceramic Society, 2014, 97(2), 399.
123 Sun W, Liu J, Xiang H, et al. Journal of the American Ceramic Society, 2016, 99(12), 4113.
124 Chen Z, Zhao X, Li M, et al.Ceramics International, 2019, 45(11), 13726.
125 Song S, Li R, Gao L, et al.Ceramics International, 2018, 44(5), 4640.
126 Song S, Xie C, Li R, et al. Ceramics International, 2019, 45(17), 23849.
127 Lin Y, Liu J, Song S, et al.Ceramics International, 2019, 45(3), 4016.
128 Hai W X, Huang Y H, Jiang Y, et al. Key Engineering Materials,2016, 697, 39.
129 Ghelich R, Aghdam R M, Torknik F S, et al.Ceramics International, 2015, 41(5), 6905.
[1] 张猛, 花福安, 赵巍. 基于机器学习的高熵合金生成相预测研究[J]. 材料导报, 2021, 35(Z1): 331-335.
[2] 杨博, 余金山, 顾全超, 王洪磊, 周新贵. SiCf/SiC复合材料制备研究进展[J]. 材料导报, 2021, 35(3): 3050-3056.
[3] 陈运灿, 闫二虎, 狄翀博, 王金华, 黄浩然, 王豪, 刘威, 徐芬, 孙立贤. 5B族(Nb,V和Ta)合金渗氢膜的研究进展[J]. 材料导报, 2020, 34(21): 21001-21011.
[4] 李萌, 杨成博, 张静, 郑开宏. 轻质高熵合金的研究现状[J]. 材料导报, 2020, 34(21): 21125-21134.
[5] 李凯, 高文明, 杜莹, 李箭. 直接CH4固体氧化物燃料电池金属支撑体研究现状与发展[J]. 材料导报, 2020, 34(17): 17149-17154.
[6] 任秦博,王景平,杨立,李翔,王学川. 用于电阻式柔性应变传感器的导电聚合物复合材料研究进展[J]. 材料导报, 2020, 34(1): 1080-1094.
[7] 杨立, 汪鹏生, 张浩, 王丰, 杨雄刚, 冯江涛, 华堃池, 胡永成. 生物活性玻璃骨材料力学性能及成骨作用改性的研究进展[J]. 材料导报, 2019, 33(Z2): 553-558.
[8] 王坤宇, 冯运莉, 柳昆. 纳米复相永磁材料的研究进展[J]. 材料导报, 2019, 33(z1): 116-121.
[9] 郑贝贝, 邵玲. 国内Bi系高温超导材料制备工艺研究进展[J]. 材料导报, 2019, 33(z1): 318-320.
[10] 孙淑红, 朱艳, 青红梅, 胡永茂, 杨斌. 亚稳相纤锌矿铜锌锡硫(WZ-CZTS)纳米晶的合成及光伏应用的研究现状与进展[J]. 材料导报, 2019, 33(5): 761-769.
[11] 成小乐, 尹君, 屈银虎, 符寒光, 赵冰. 连续碳化硅纤维增强钛基(SiCf/Ti)复合材料的制备技术[J]. 《材料导报》期刊社, 2018, 32(5): 796-807.
[12] 崔田路, 顾雪, 贾中秋, 尹晓桐, 曹中秋, 张轲. 不同工艺制备的纳米晶Ag-25Ni合金在NaCl溶液中的腐蚀性能[J]. 材料导报, 2018, 32(16): 2798-2802.
[13] 李庆达, 郭建永, 胡军, 王宏立, 连法增, 陆曹卫. 通过改进的制备工艺提高FINEMET纳米晶磁粉芯的磁性能及其机理*[J]. 《材料导报》期刊社, 2017, 31(16): 26-30.
[14] 王延杰, 汝杰, 赵东旭, 王田苗, 沈奇, 陈花玲, 朱灯林. 离子聚合物-金属复合材料(IPMC)的电极界面研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 24-29.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed