Please wait a minute...
材料导报  2020, Vol. 34 Issue (17): 17149-17154    https://doi.org/10.11896/cldb.19120197
  无机非金属及其复合材料 |
直接CH4固体氧化物燃料电池金属支撑体研究现状与发展
李凯1, 高文明1, 杜莹2, 李箭3
1 西安石油大学材料科学与工程学院,西安 710065
2 66389部队,西安 710061
3 华中科技大学材料科学与工程学院,材料成型及模具技术国家重点实验室,燃料电池研究中心,武汉 430074
Metallic Support for Direct-CH4 Solid Oxide Fuel Cell
LI Kai1, GAO Wenming1, DU Ying2, LI Jian3
1 School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
2 Army Unit 66389, Xi'an 710061, China
3 Center for Fuel Cell Innovation, State Key Laboratory for Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
下载:  全 文 ( PDF ) ( 7755KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属支撑固体氧化物燃料电池(MS-SOFC)是一种不同于传统金属陶瓷阳极支撑的新型燃料电池。MS-SOFC以高热导率的不锈钢金属材料作为支撑体,具有成本低廉、结构强度高、启动速度快、抗热震性能好等优点。然而,金属与陶瓷材料在物理和化学性能上具有截然不同的特性,将金属引入到SOFC中作为支撑体,在材料选择、电池制备工艺和燃料气体种类等方面面临很多新的问题。
   近年来关于MS-SOFC的研究,除了金属支撑体的材料和成型工艺外,研究者们主要尝试利用各种先进的薄膜沉积技术制备MS-SOFC的阳极、电解质和阴极,并根据多孔电极和致密电解质的不同微观结构需求,不断优化MS-SOFC制备工艺。为了实现在MS-SOFC中直接使用CH4基燃料,研究者将纳米催化剂颗粒包覆在金属支撑体的多孔网络骨架表面,从而实现阳极在重整性和抗积碳性的双重优化。此外,通过在金属支撑体外层增加高催化活性的重整层,也可以实现碳氢燃料的原位重整,提高MS-SOFC在CH4基燃料中的稳定性能。
   本文讨论了MS-SOFC的发展现状,系统总结了SOFC金属支撑体材料的研究现状,分析了MS-SOFC制备过程中的关键问题。在此基础上,特别关注了直接应用CH4作为燃料的Ni-Fe合金支撑SOFC,分析了Ni-Fe合金支撑体的结构特性,提出增强Ni-Fe合金支撑体催化活性的措施,探讨了直接CH4固体氧化物燃料电池金属支撑体未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李凯
高文明
杜莹
李箭
关键词:  金属支撑体  Ni-Fe合金  制备工艺  CH4燃料    
Abstract: Metal support solid oxide fuel cells (MS-SOFC) resembles with conventional solid oxide fuel cells in materials and fabrication schemes, with main difference being loading bear component. MS-SOFC relies heavily on porous metallic supporting structure, and offers competitive advantages such as low materials cost, high tolerance towards rapid thermal cycling, excellent structural robustness and sealing efficiency.However, MS-SOFC remains many major challenges in support materials, cell preparation and fuel selection due to the distinct physical and chemical pro-perties in metal and ceramic materials.
For recent research on MS-SOFC, in addition to the metal support materials and preparation process, efforts have been made to prepare the anode function layer, electrolyte and cathode on the metal substrate by thin file technology and continually optimize preparation process of MS-SOFC according to the different microstructure for porous electrode and dense electrolyte. For directly using CH4 based fuel in MS-SOFC, nano-structured metallic support are prepared by infiltrating nano catalytic particles into metal support to improve CH4 reforming activity and carbon resistance. In addition, an extra layer with high catalytic activity is applied on the metallic support to on-cell reform the hydrocarbon fuel and improve the stability of CH4 fueled MS-SOFC.
The objective of this article is to provide a critical and comprehensive review in the recent development of MS-SOFC, metallic support materials and fabrication process, as well as the key issue in direct CH4 MS- SOFC. The issues raised by MS-SOFC fabrication process are also presented and analyzed to provide some guidelines in the search for new fabrication schemes for MS-SOFC. Emphasis will be placed on Ni-Fe alloy support SOFC with CH4 fuel. The methods of enhancing the catalytic activity of metal support are proposed according to the characters of metal support. Finally, the development trends of metal support for direct methane SOFC are discussed.
Key words:  metal-support    Ni-Fe alloy    preparation process    methane fuel
               出版日期:  2020-09-10      发布日期:  2020-09-02
ZTFLH:  TB383  
  TM911.46  
基金资助: 国家自然科学基金青年科学基金(51702258);陕西省自然科学基础研究计划项目(2020JM-535);陕西省教育厅专项科研计划项目(17JK0598);西安石油大学《材料科学与工程》省级优势学科资助项目(YS37020203)
通讯作者:  likai3611897@126.com   
作者简介:  李凯,西安石油大学材料科学与工程学院讲师。2009年7月本科毕业于西安工业大学材料与化工学院,2015年12月在华中科技大学材料学专业取得博士学位。主要从事固体氧化物燃料电池的研究工作。近年来,在固体氧化物燃料电池领域发表论文10余篇,包括Journal of Power Sources、International Journal of Hydrogen Energy、Scientific Reports和Journal of Inorganic Materials。
引用本文:    
李凯, 高文明, 杜莹, 李箭. 直接CH4固体氧化物燃料电池金属支撑体研究现状与发展[J]. 材料导报, 2020, 34(17): 17149-17154.
LI Kai, GAO Wenming, DU Ying, LI Jian. Metallic Support for Direct-CH4 Solid Oxide Fuel Cell. Materials Reports, 2020, 34(17): 17149-17154.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120197  或          http://www.mater-rep.com/CN/Y2020/V34/I17/17149
1 Leah R T, Bone A, Hammer E, et al. ECS Transactions, 2017, 78(1), 87.
2 Thaler F, Udomsilp D, Schafbauer W, et al. Journal of Power Sources, 2019, 434, 9.
3 Dogdibegovic E, Wang R F, Lau G Y, et al. Journal of Power Sources, 2019, 437, 9.
4 Li K, Jia L C, Wang X, et al. Journal of Power Sources,2015, 284, 446.
5 Dogdibegovic E, Fukuyama Y, Tucker M C. Journal of Power Sources, 2020, 449, 227598.
6 Jang Y H, Lee S, Shin H Y, et al. International Journal of Hydrogen Energy,2018, 43, 16215.
7 Udomsilp D, Thaler F, Menzler N H, et al. Journal of the Electrochemical Society, 2019, 166, 506.
8 Tucker M C. Journal of Power Sources, 2018, 395, 314.
9 Ansar A, Szabo P, Arnold J, et al. ECS Transactions, 2011, 35(1), 147.
10 Klemenso T, Nielsen J, Blennow P, et al. ECS Transactions, 2011, 35(1), 369.
11 Krishnan V V. WIREs Energy and Environment,2017, 6(5), 35.
12 Li K, Jia L C, Wang X, et al. Scientific Reports, 2016, 6, 9.
13 Tucker M C. Journal of Power Sources, 2010, 195(15), 4570.
14 Reolon R P, Sanna S, Xu Y, et al. Journal of Materials Chemistry A, 2018, 6, 7887.
15 Tucker M C, Lau G Y, Jacobson C P, et al. Journal of Power Sources, 2008,171(2), 477.
16 Cuglietta M, Arevalo-Quintero O, Kesler O. Fuel Cells, 2019, 19(3), 268.
17 Dayaghi A M, Kim K J, Kim S, et al. Journal of Power Sources, 2016, 324, 288.
18 Molin S, Dunst K J, Karczewski J, et al. Journal of the Electrochemical Society, 2016, 163, 296.
19 Szabo P, Arnold J, Franco T, et al. ECS Transactions, 2009, 25(2), 175.
20 Molin S, Gazda M, Kusz B, et al. Journal of the European Ceramic Society, 2009, 29, 757.
21 Liu Z B, Liu B B, Ding D, et al. International Journal of Hydrogen Energy, 2012, 37, 4401.
22 Brandner M, Bram M, Froitzheim J, et al. Solid State Ionics, 2008, 179, 1501.
23 Kong Y, Hua B, Pu J, et al. International Journal of Hydrogen Energy, 2010, 35, 4592.
24 Magdefrau N J, Chen L, Sun E Y, et al. Surface & Coatings Technology, 2014, 242, 109.
25 Wang X, Li K, Jia L C, et al. Journal of Power Sources, 2015, 277, 474.
26 Knibbe R, Wang H J, Blennow P, et al. Journal of Power Sources, 2013, 228, 75.
27 Stefan E, Neagu D, Tullmar P B, et al. Materials Research Bulletin, 2017, 89, 232.
28 Zhou Y, Yuan C, Chen T, et al. Journal of Power Sources, 2014, 267, 117.
29 Choi H J, Kim T W, Na Y H, et al. Journal of Power Sources, 2018, 406, 81.
30 Tucker M C. Journal of Power Sources, 2017, 369, 6.
31 Ju Y W, Ida S, Ishihara T, et al. Fuel Cells, 2012, 12(6), 1064.
32 Park H C, Virkar A V. Journal of Power Sources, 2009, 186(1), 133.
33 Wang X, Jia L C, Li K, et al. International Journal of Hydrogen Energy, 2018, 43(45), 21030.
34 Li K, Li X, Li J, et al. Journal of Inorganic Materials, 2019, 34(6), 611.
35 Park G G, Yim S D, Yoon Y G, et al. Catalysis Today, 2005, 110, 108.
36 Zhou Y C, Ye X F, Li J L, et al. Journal of the Electrochemical Society, 2014,161, 332.
37 Kang B S, Matsuda J, Ju Y W, et al. Nano Energy, 2019, 56, 382.
38 Kesler O, Cuglietta M, Harris J, et al. ECS Transactions, 2013, 2013, 57(1), 491.
39 Zhang S L, Li C X, Li C J, et al. Journal of Power Sources, 2016, 323, 1.
40 Xie W, Gao H Y, He Y H, et al. Powder Metallurgy, 2016, 59(5), 308.
41 Glasscock J A, Mikkelsen L, Persson Å H, et al. Solid State Ionics, 2013, 242, 33.
42 Wang Z, Feng P Z, Geng P, et al. Journal of the Australian Ceramic Society, 2017, 53, 287.
43 Fan E S C, Kuhn J, Kesler O. Journal of Power Sources, 2016, 316, 72.
44 Ishii K, Matsunaga C, Kobayashi K, et al. Journal of the European Ceramic Society, 2019, 39, 5292.
45 Zhang S L, Yu H X, Li C X, et al. Journal of Materials Chemistry A, 2016, 4(19), 7461.
46 Zhou Y C, Meng X, Liu X J, et al. Journal of Power Sources, 2014, 267, 148.
47 Zhou Y C, Chen T, Li J L, et al. Journal of Power Sources, 2015, 295, 67.
48 Dogdibegovic E, Wang R F, Lau G Y, et al. Journal of Power Sources, 2019, 410, 91.
49 Blennow P, Sudireddy B R, Persson Å H, et al. Fuel Cells, 2013, 13(4), 494.
50 Sun Y F, Li J H, Zeng Y M, et al. Journal of Materials Chemistry A, 2015, 3, 11048.
51 Li K, Wang X, Jia L C, et al. International Journal of Hydrogen Energy, 2014, 39(34),19747.
52 Ju Y W, Eto H, Inagaki T, et al. Journal of Power Sources, 2010, 195(9), 6294.
53 Cho H J, Kim K J, Park Y M, et al. International Journal of Hydrogen Energy, 2016, 41(22), 9577.
54 Xu N, Chen M, Han M F. Journal of Alloys and Compounds, 2018, 765, 757.
55 Roy P S, Park N K, Kim K. International Journal of Hydrogen Energy, 2014, 39(9), 4299.
56 Kan H, Lee H. Catalysis Communications, 2010, 12(1), 36.
57 Lee S H, Kim H. Ceramics International, 2014, 40(4), 5959.
58 Li J J, Wang X, Pu J, et al. Key Engineering Materials,2018, 768,206.
[1] 任秦博,王景平,杨立,李翔,王学川. 用于电阻式柔性应变传感器的导电聚合物复合材料研究进展[J]. 材料导报, 2020, 34(1): 1080-1094.
[2] 杨立, 汪鹏生, 张浩, 王丰, 杨雄刚, 冯江涛, 华堃池, 胡永成. 生物活性玻璃骨材料力学性能及成骨作用改性的研究进展[J]. 材料导报, 2019, 33(Z2): 553-558.
[3] 王坤宇, 冯运莉, 柳昆. 纳米复相永磁材料的研究进展[J]. 材料导报, 2019, 33(z1): 116-121.
[4] 郑贝贝, 邵玲. 国内Bi系高温超导材料制备工艺研究进展[J]. 材料导报, 2019, 33(z1): 318-320.
[5] 孙淑红, 朱艳, 青红梅, 胡永茂, 杨斌. 亚稳相纤锌矿铜锌锡硫(WZ-CZTS)纳米晶的合成及光伏应用的研究现状与进展[J]. 材料导报, 2019, 33(5): 761-769.
[6] 左迎峰, 李萍, 屠茹茹, 赵星, 袁光明, 吴义强. 基于响应曲面法优化酸解氧化制备高醛基含量的双醛淀粉的工艺条件[J]. 材料导报, 2019, 33(2): 335-341.
[7] 成小乐, 尹君, 屈银虎, 符寒光, 赵冰. 连续碳化硅纤维增强钛基(SiCf/Ti)复合材料的制备技术[J]. 《材料导报》期刊社, 2018, 32(5): 796-807.
[8] 崔田路, 顾雪, 贾中秋, 尹晓桐, 曹中秋, 张轲. 不同工艺制备的纳米晶Ag-25Ni合金在NaCl溶液中的腐蚀性能[J]. 材料导报, 2018, 32(16): 2798-2802.
[9] 李庆达, 郭建永, 胡军, 王宏立, 连法增, 陆曹卫. 通过改进的制备工艺提高FINEMET纳米晶磁粉芯的磁性能及其机理*[J]. 《材料导报》期刊社, 2017, 31(16): 26-30.
[10] 王延杰, 汝杰, 赵东旭, 王田苗, 沈奇, 陈花玲, 朱灯林. 离子聚合物-金属复合材料(IPMC)的电极界面研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 24-29.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed