Please wait a minute...
材料导报  2020, Vol. 34 Issue (21): 21125-21134    https://doi.org/10.11896/cldb.19090122
  金属与金属基复合材料 |
轻质高熵合金的研究现状
李萌1, 杨成博1, 张静1,*, 郑开宏2
1 重庆大学材料科学与工程学院,重庆 400044;
2 广东省材料与加工研究所,广州 510651
Research Status in Light-weight High-entropy Alloys
LI Meng1, YANG Chengbo1, ZHANG Jing1,*, ZHENG Kaihong2
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2 Guangdong Institute of Materials and Processing, Guangzhou 510651, China
下载:  全 文 ( PDF ) ( 3499KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高熵合金(HEAs)作为一种新型多主元固溶体合金,其独特的合金设计理念和优异的性能引起了科研人员的普遍关注,成为当前材料研究的热点。其中,轻质高熵合金(LWHEAs)是基于高熵合金的轻量化而设计开发的一种新型轻质合金,它具有传统轻质合金所无法比拟的高比强度和比硬度等突出特点,在航空航天、能源交通和电子通讯等领域显示出巨大的应用潜力。
目前,轻质高熵合金的研究还处于起步阶段,存在许多不足之处:(1)在合金设计方面,大部分轻质高熵合金的开发都是基于传统的由过渡族元素组成的高熵合金的经验准则,缺乏可靠的成分设计方法;(2)在合金制备方面,当前的工艺尚难以制备出组织结构简单、性能优异的大块轻质高熵合金材料。
近年来,研究者们实验探索了近百种轻质高熵合金,并积极寻求适合于轻质高熵合金相结构预测的经验准则,这些准则涉及的热物理参数包括混合熵(ΔSmix)、混合焓(ΔHmix)、原子半径差(δ)和价电子浓度(VEC)等。最近,利用计算机模拟设计轻质高熵合金的方法逐渐发展起来,包括采用相图计算(CALPHAD)及第一性原理计算(DFT)预测轻质高熵合金的相形成和相转变等,并展现出较明显的优势。轻质高熵合金的制备最初主要采用真空熔铸法,但采用该方法制备的轻质高熵合金显微组织普遍比较复杂。近几年的研究工作尝试采用机械合金化来制备轻质高熵合金,降低了合金形成金属间化合物(IM)等复杂相的趋势,获得了组织结构更加单一的轻质高熵合金。此外,尽管现有多数铸态轻质高熵合金组织复杂、塑性较差,但富铝(或富镁)型轻质高熵合金倾向于形成以固溶体(SS)相为主、加微量IM相的较为简单的显微结构,展现出良好的强韧结合性能潜力。
本文基于当前轻质高熵合金研究现状,从轻质元素选取规则入手,总结了轻质高熵合金的设计方法、制备工艺以及显微结构和性能。此外,详细探讨了轻质高熵合金的经验相形成准则,提出了适应Ⅰ型和Ⅱ型轻质高熵合金的相形成准则,对未来轻质高熵合金设计具有一定的指导意义。最后,指出了当前轻质高熵合金研究中存在的主要问题并展望了未来的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李萌
杨成博
张静
郑开宏
关键词:  轻质高熵合金  合金设计  相形成准则  制备工艺  显微结构与性能    
Abstract: As a brand-new type of multi-principal component solid solution alloy, high-entropy alloys (HEAs) have drawn widely attention of researchers due to their unique alloy design concept and amazing performances, which has become a hot spot in current material research. Among them, light-weight high-entropy alloys (LWHEAs) are thought to be a novel kind of light-weight alloy materials developed based on the light-weight design of HEAs. They feature high specific strength and excellent specific hardness in general, which is superior to most traditional lightweight alloys, implicating great application potential in the fields of aerospace, energy transportation and electronic communication.
However, the current research of LWHEAs is still at an exploratory stage, and two stern challenges encountered in developing LWHEAs: (ⅰ)in terms of the alloy design, most LWHEAs are developed by a trial-and-error method based on the empirical criteria of traditional HEAs consist of transition metal elements, and reliable methods for guiding the design of LWHEAs are not available; (ⅱ) in terms of the preparation technology, it is difficult to produce bulk LWHEA materials with simple microstructures and exceptional properties by using the current preparation methods.
Hitherto, almost 100 kinds of LWHEAs have been explored experimentally by researchers. And they have been striving to search for suitable empirical criteria for predicting the phase structure of LWHEAs, which involving many thermos-physical parameters such as the mixing entropy (ΔSmix), the mixing enthalpy(ΔHmix), the atom radius difference(δ), and the valence electron concentration(VEC).More recently, the use of computer simulation methods to assist LWHEA design begins to develop gradually and shows apparent advantages, for instance, utilizing phase diagram calculation (CALPHAD) and first-principles calculation (DFT) to predict the phase formation and phase transition of LWHEAs. Although the vacuum casting provides a simple route to obtain bulk LWHEAs, many LWHEAs prepared from which display a multi-phased microstructure. Works in the past years have established a new avenue to overcome the complex microstructures, by introducing mechanical alloying process, which have successfully achieved the reduced tendency of alloys to form complex phases such as intermetallic compounds (IM), and produced LWHEAs with simpler phase constitutions. Besides, although most as-cast LWHEAs generally manifest complex multi-phased microstructure with poor plasticity, the Al-rich (or Mg-rich) LWHEAs,according to the existing data, form simple microstructures very often with a dominated solid solution (SS) phase and traces of IM phase, and in consequence show the potential for a good combination of strength and ductility.
In this review, according to the current research status in LWHEAs, the light elements selection rule is first summarized. Also, the recent deve-lopment of LWHEAs including alloy design methods, preparation processes, microstructures and properties are summed up. In addition, the empirical phase formation rules about LWHEAs design also are analyzed in details, especially, the phase formation rules suitable to Ⅰ-type and Ⅱ-type LWHEAs respectively are proposed, which is supposed to guide future LWHEAs design. Finally, the main problems of LWHEAs are discussed and future research directions in LWHEAs are suggested.
Key words:  light-weight high-entropy alloys (LWHEAs)    alloy design    phase formation rules    preparation processes    microstructures and properties
               出版日期:  2020-11-10      发布日期:  2020-11-17
ZTFLH:  TG139  
基金资助: 中央高校基本科研业务费基金资助项目(2018CDPTCG0001/42)
作者简介:  李萌,2017年7月毕业于西安工业大学,获得工学学士学位。现为重庆大学材料科学与工程学院硕士研究生,在张静教授的指导下进行研究。目前主要研究领域为轻质高熵合金材料。
张静,博士,重庆大学教授、博士研究生导师。国家万人计划科技创新领军人才,科技部创新人才推进计划中青年科技创新领军人才,国家百千万人才,国务院政府特殊津贴专家,教育部新世纪优秀人才,第十届“中国青年科技奖”和重庆市首届杰青获得者。担任重庆大学国家镁合金材料工程技术研究中心副主任、重庆材料学会副理事长、中国材料研究学会镁分会常务理事、全国金属热成型标准委员会委员,中国金属学会青委会理事,Elsevier期刊Journal of Magnesium and Alloys(SCI)编委。主要从事轻质金属结构材料的基础研究和应用开发。先后主持和完成国家和省部级科研项目30余项,发表论文120余篇,获得授权国家发明专利20余项,制订ISO 国际标准1项、国家标准9项,建立3个镁合金新牌号。以第1、2完成人获国家科技进步二等奖1项、省部级科技进步一等奖2项、省部级自然科学二等奖2项。
引用本文:    
李萌, 杨成博, 张静, 郑开宏. 轻质高熵合金的研究现状[J]. 材料导报, 2020, 34(21): 21125-21134.
LI Meng, YANG Chengbo, ZHANG Jing, ZHENG Kaihong. Research Status in Light-weight High-entropy Alloys. Materials Reports, 2020, 34(21): 21125-21134.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090122  或          http://www.mater-rep.com/CN/Y2020/V34/I21/21125
[1] Zhu L, Li N, Childs P R N.Propulsion and Power Research, 2018, 7(2), 103.
[2] Hirsch J, Al-Samman T. Acta Materialia, 2013, 61(3), 818.
[3] Cantor B, Chang I T H, Knight P, et al. Materials Science and Enginee-ring A, 2004, 375, 213.
[4] Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
[5] Tsai M H,Yeh J W. Materials Research Letters, 2014, 2(3), 107.
[6] Zhang Y, et al. Progress in Materials Science, 2014, 61, 1.
[7] Senkov O N,Miller J D,Miracle D B, et al. Nature Communications, 2015, 6, 6529.
[8] Fu X, Schuh C A, Olivetti E A. Scripta Materialia, 2017, 138, 45.
[9] Youssef K M, et al. Materials Research Letters, 2015, 3(2), 95.
[10] Zhang Y, Zhou Y J, Lin J P, et al. Advanced Engineering Materials, 2008, 10(6), 534.
[11] Guo S, Hu Q, Ng C, et al. Intermetallics, 2013, 41, 96.
[12] Yang X, Zhang Y. Materials Chemistry and Physics, 2012, 132, 233.
[13] Zhang Y, Yang X, Liaw P K. JOM, 2012, 64(7), 830.
[14] Ye Y F,Wang Q,Lu J, et al. Scripta Materialia, 2015, 104, 53.
[15] Singh A K, Kumar N, Akanksha D, et al. Intermetallics, 2014, 53, 112.
[16] King D J M, et al. Acta Materialia, 2016, 104, 172.
[17] Senkov O N, Miracle D B. Journal of Alloys and Compounds, 2016, 658, 603.
[18] Takeuchi A, Inoue A.Materials Transactions, 2005, 46(12), 2817.
[19] Guo S.Materials Science and Technology, 2015, 31(10), 1223.
[20] Yang X, Chen S Y, Cotton J D, et al. JOM, 2014, 66(10), 2009.
[21] Miracle D B, Senkov O N. Acta Materialia, 2017, 122, 448.
[22] Huang X J, Miao J S, Luo A A. Journal of Materials Science, 2019, 54(3), 2271.
[23] Feng R, Gao M C, Lee C, et al. Entropy, 2016, 18(9), 333.
[24] Stepanov N D, Yurchenko N Y, Shaysutanov D G, et al. Materials Science and Technology, 2015, 31(10), 1184.
[25] Stepanov N D, Yurchenko N Y, Skibin D V, et al. Journal of Alloys and Compounds, 2015, 652, 266.
[26] Stepanov N D, et al. Materials Letters, 2015, 142,153.
[27] Jayaraj J, Thirathipviwat P, Han J, et al. Intermetallics, 2018, 100, 9.
[28] Chen W,Tang Q H,Wang H, et al. Materials Science and Technology, 2018, 34(11), 1309.
[29] Qiu Y, Hu Y J, Taylor A, et al. Acta Materialia, 2017, 123, 115.
[30] Kang M J, Lim K R, Won J W, et al. Entropy, 2018, 20(5), 355.
[31] Bolbut V, Wessel E, Kruger M. Scripta Materialia, 2018, 150, 54.
[32] Menou E,Tancret F, et al. Scripta Materialia, 2018, 156, 120.
[33] Tseng K K, Yang Y C, Juan C C, et al. Science China Technological Sciences, 2018, 61(2), 184.
[34] Li R, Gao J C, Fan K.Materials Science Forum, 2010, 650, 265.
[35] Du X H, et al. Key Engineering Materials, 2017, 727, 132.
[36] Jia Y F,Jia Y D, Wu S W, et al. Materials, 2019, 12(7), 1136.
[37] Li R X, Wang Z, et al. Science China Materials, 2019, 62, 736.
[38] Shao L, Zhang T, Li L, et al. Journal of Materials Engineering and Performance, 2018,27(12), 6648.
[39] Jon M S, Iban V, Joseba A, et al. Metals, 2018, 8(3), 167.
[40] Gao X Q, Zhao K, Ke H B, et al. Journal of Non-Crystalline Solids, 2011, 357(21), 3557.
[41] Chen Y L, Tsai C W, Juan C C, et al. Journal of Alloys and Compounds, 2010, 506(1), 210.
[42] Hammond V H, Atwater M A, Darling K A. et al. JOM, 2014, 66, 2021.
[43] Maulik O, Kumar V. Materials Characterization, 2015, 110, 116.
[44] Maulik O, Kumar D, Kumar S, et al. Intermetallics, 2016, 77, 46.
[45] Tan X R, Zhang G P, et al. Materials and Design, 2016, 109, 27.
[46] Ge W J, et al. Journal of Iron and Steel Research, 2017, 24(4), 448.
[47] Zepon G, Leiva D R, Strozi R B, et al. International Journal of Hydrogen Energy, 2018, 43(3), 1702.
[48] Wang W, Li B Y, Zhai S C, et al. Metals and Materials International, 2018, 24(5), 1112.
[49] Liang S M, Rainer S F. Journal of Phase Equilibria and Diffusion, 2017, 38(4), 369.
[50] Tan Y M, et al. Journal of Alloys and Compouds, 2018, 742, 430.
[51] Guo S, Ng C, Lu J, et al. Journal of Applied Physics, 2011, 109(10), 103505.
[52] Takeuchi A, Amiya K, Wada T, et al. JOM, 2014, 66(10), 1984.
[53] Kube S A, Sohn S, Uhl D, et al. Acta Materialia, 2019, 166, 677.
[54] Zhao Y J, Qiao J W, Ma S G, et al. Materials & Design, 2016, 96, 10.
[55] Zhang F, Zhang C, Chen S L, et al. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 2014, 45, 1.
[56] Sun W H, Huang X J, Luo A A. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 2017, 56, 19.
[57] Rui F, Gao M C, Chuan Z, et al. Acta Materialia, 2018, 146, 28.
[58] Rui F, et al. NPJ Computational Materials, 2017, 3, UNSP 50.
[59] Tian F Y, Delczeg L, et al. Physical Review, 2013, 88, 085128.
[60] Yadav S, Sarkar S, Aggarwal A, et al. Wear, 2018, 410, 93.
[61] Suryanarayana C. Progress in Materials Science, 2001, 46(1-2), 1.
[62] Varalakshmi S, Kamaraj M, Murty B S. Journal of Alloys and Compouds, 2008, 460(1-2), 253.
[63] Tan X R, Zhao R F, Ren B, et al. Materials Science and Technology, 2016, 32(15), 1582.
[1] 陈运灿, 闫二虎, 狄翀博, 王金华, 黄浩然, 王豪, 刘威, 徐芬, 孙立贤. 5B族(Nb,V和Ta)合金渗氢膜的研究进展[J]. 材料导报, 2020, 34(21): 21001-21011.
[2] 季承维, 马爱斌, 江静华. 轻质高熵合金的研究现状与发展趋势[J]. 材料导报, 2020, 34(19): 19094-19100.
[3] 贾岳飞, 王刚, 贾延东, 伍诗伟, 穆永坤, 徐龙, 张靓博, 徐立明. 轻质高熵合金研究现状[J]. 材料导报, 2020, 34(17): 17003-17017.
[4] 李凯, 高文明, 杜莹, 李箭. 直接CH4固体氧化物燃料电池金属支撑体研究现状与发展[J]. 材料导报, 2020, 34(17): 17149-17154.
[5] 任秦博,王景平,杨立,李翔,王学川. 用于电阻式柔性应变传感器的导电聚合物复合材料研究进展[J]. 材料导报, 2020, 34(1): 1080-1094.
[6] 杨立, 汪鹏生, 张浩, 王丰, 杨雄刚, 冯江涛, 华堃池, 胡永成. 生物活性玻璃骨材料力学性能及成骨作用改性的研究进展[J]. 材料导报, 2019, 33(Z2): 553-558.
[7] 王坤宇, 冯运莉, 柳昆. 纳米复相永磁材料的研究进展[J]. 材料导报, 2019, 33(z1): 116-121.
[8] 郑贝贝, 邵玲. 国内Bi系高温超导材料制备工艺研究进展[J]. 材料导报, 2019, 33(z1): 318-320.
[9] 刘谦, 王昕阳, 黄燕滨, 谢璐, 许诠, 黄俊雄. 高熵合金设计与计算机模拟方法的研究进展[J]. 材料导报, 2019, 33(z1): 392-397.
[10] 彭鹏, 汤爱涛, 佘加, 周世博, 潘复生. 超细晶镁合金的研究现状及展望[J]. 材料导报, 2019, 33(9): 1526-1534.
[11] 孙淑红, 朱艳, 青红梅, 胡永茂, 杨斌. 亚稳相纤锌矿铜锌锡硫(WZ-CZTS)纳米晶的合成及光伏应用的研究现状与进展[J]. 材料导报, 2019, 33(5): 761-769.
[12] 成小乐, 尹君, 屈银虎, 符寒光, 赵冰. 连续碳化硅纤维增强钛基(SiCf/Ti)复合材料的制备技术[J]. 《材料导报》期刊社, 2018, 32(5): 796-807.
[13] 崔田路, 顾雪, 贾中秋, 尹晓桐, 曹中秋, 张轲. 不同工艺制备的纳米晶Ag-25Ni合金在NaCl溶液中的腐蚀性能[J]. 材料导报, 2018, 32(16): 2798-2802.
[14] 李庆达, 郭建永, 胡军, 王宏立, 连法增, 陆曹卫. 通过改进的制备工艺提高FINEMET纳米晶磁粉芯的磁性能及其机理*[J]. 《材料导报》期刊社, 2017, 31(16): 26-30.
[15] 王延杰, 汝杰, 赵东旭, 王田苗, 沈奇, 陈花玲, 朱灯林. 离子聚合物-金属复合材料(IPMC)的电极界面研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 24-29.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed