Please wait a minute...
材料导报  2020, Vol. 34 Issue (17): 17003-17017    https://doi.org/10.11896/cldb.20040207
  高熵合金 |
轻质高熵合金研究现状
贾岳飞, 王刚, 贾延东, 伍诗伟, 穆永坤, 徐龙, 张靓博, 徐立明
上海大学材料研究所微结构重点实验室,上海 200444
Light-weight High-entropy Alloy: a Review
JIA Yuefei, WANG Gang, JIA Yandong, WU Shiwei, MU Yongkun, XU Long, ZHANG Liangbo, XU Liming
Laboratory for Microstructures, Institute of Materials, Shanghai University, Shanghai 200444, China
下载:  全 文 ( PDF ) ( 17438KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高熵合金由于具有独特的合金设计理念和优异的性能而受到广泛关注。早期的高熵合金主要基于过渡族元素、难熔元素或者稀土元素,密度相对较高,从而极大限制了其应用。轻质高熵合金是基于Al、Li、Mg、Ti等轻质元素开发的一类新型高熵合金,在材料轻量化的趋势下,关于轻质高熵合金的研究逐渐增多。轻质高熵合金作为高熵合金的新分支,具有低密度、低模量、高比强度、高比硬度的独特优势。除此之外,轻质高熵合金还具有高熵合金的高强度、高硬度、优异的耐磨性、良好的耐氧化性、优异的耐腐蚀性、良好的抗高温氧化和抗高温软化性能以及良好的生物相容性等特点。这些性能上的优势使得轻质高熵合金在航空航天以及生物科技领域极具应用潜力。
   目前,轻质高熵合金的研究主要涉及成分开发、制备、组织结构表征、性能特点等。新成分的开发与设计主要利用经验参数与相图计算以及第一性原理计算相结合的方法。合金的制备以感应熔炼、电弧熔炼和机械合金化等方法为主;轻质高熵合金的相组成与组织结构通常包括非晶态组织、单相多晶组织、多相复杂组织等;其性能方面的研究主要涉及力学方面的强度、硬度、高温蠕变等,还包括抗氧化性、耐蚀性以及生物相容性等。本文从轻质高熵合金的成分设计、制备方法、组织特征、性能特点等方面进行了综述,并指出了轻质高熵合金所面临的问题与挑战。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾岳飞
王刚
贾延东
伍诗伟
穆永坤
徐龙
张靓博
徐立明
关键词:  轻质高熵合金  低密度  微观组织  力学性能    
Abstract: High-entropy alloy has attracted masses of attention due to its unique alloy design concept and excellent properties. The previous high-entropy alloys, whose density is relatively high, are mainly based on transition group elements, refractory elements or rare earth elements, which greatly limits their application. With the trend of material lightweight, the research on light-weight high-entropy alloys are gradually increasing. Light-weight high-entropy alloy is a new branch of high-entropy alloy based on light elements such as Al, Li, Mg, Ti, etc. Light-weight high-entropy alloys have unique advantages of low density, low modulus, high specific strength and high specific hardness. In addition, light-weight high-entropy alloys also have high strength, high hardness, excellent wear resistance, good oxidation resistance, excellent corrosion resistance, good high temperature oxidation resistance, high temperature softening resistance and good biocompatibility. The superior properties of light-weight high-entropy alloys have significant potential to be applied to aerospace and biotechnology.
At present, the research of light-weight high-entropy alloys mainly involve the development of composition, preparation, characterization and properties. The development and design of new components mainly use the method of combination of empirical parameters, CALPHAD and DFT (Density functional theory) calculation. The main methods of alloys preparation are induction melting, arc melting and mechanical alloying. The phase composition and structure of light-weight high-entropy alloys usually include amorphous structure, single-phase polycrystalline structure, multiphase complex structure, etc. The research of performance mainly involves mechanical properties, include strength, hardness, high tempe-rature creep, etc., and also includes oxidation resistance, corrosion resistance, biocompatibility, etc. In this paper, the composition design, pre-paration, microstructure and properties of light-weight high-entropy alloy are reviewed. Meanwhile, the problems and challenges for light-weight high-entropy alloy are prospected.
Key words:  light-weight high-entropy alloy    low density    microstructure    mechanical properties
               出版日期:  2020-09-10      发布日期:  2020-09-02
ZTFLH:  TB31  
通讯作者:  g.ang@shu.edu.cn   
作者简介:  贾岳飞,2016年本科毕业于黑龙江科技大学,2019年硕士毕业于上海大学。现今为上海大学材料学在读博士,师从王刚教授。研究兴趣为材料轻量化,致力于低密度、高性能合金的开发。当前的主要工作为新型多组元轻质合金的成分设计、相组成与相转变关系研究、组织结构与力学性能关系研究等。
王刚,上海大学教授、博士研究生导师。本科、硕士、博士均毕业于哈尔滨工业大学。之后在中国科学院物理研究所和中国香港理工大学做博士后研究。2008年获得德国洪堡学者资助在德国德累斯顿莱布尼茨固体所工作。2010年至今在上海大学工作。2019年获得国家自然科学基金委“杰出青年科学基金”。2013年获得国家自然科学基金委“优秀青年科学基金”。2011年获得上海市“东方学者”特聘教授称号。发表SCI论文170篇。目前主要研究方向为离子辐照对非晶合金表面的影响;高能同步辐射研究非晶合金的原位变形行为和低温(液氮温区)结构转变;非晶合金弹-塑性变形行为,特别是宽温度范围内(液氮温区)的弹-塑性变形服役行为;玻璃材料断裂损伤和撞击行为;高熵合金的结构与变形的相关性。
引用本文:    
贾岳飞, 王刚, 贾延东, 伍诗伟, 穆永坤, 徐龙, 张靓博, 徐立明. 轻质高熵合金研究现状[J]. 材料导报, 2020, 34(17): 17003-17017.
JIA Yuefei, WANG Gang, JIA Yandong, WU Shiwei, MU Yongkun, XU Long, ZHANG Liangbo, XU Liming. Light-weight High-entropy Alloy: a Review. Materials Reports, 2020, 34(17): 17003-17017.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040207  或          http://www.mater-rep.com/CN/Y2020/V34/I17/17003
1 George E P, Raabe D, Ritchie R O. Nature Reviews Materials, 2019, 4(8), 515.
2 Yeh J W, Chen S K, Lin S J, et al.Advanced Engineering Materials, 2004, 6(5), 299.
3 Yeh J W.Annales de Chimie Science des Matériaux, 2006, 31(6), 633.
4 Tong Y, Chen D, Han B, et al.Acta Materialia, 2019, 165, 228.
5 Shi P, Ren W, Zheng T, et al.Nature Communication, 2019, 10(1), 489.
6 Yang T, Zhao Y L, Tong Y, et al.Science, 2018, 362(6417), 933.
7 Miracle D B, Senkov O N.Acta Materialia, 2017, 122, 448.
8 Michael C G, Jien W Y, Liaw P K, et al. High-entropy alloys, Springer International Publishing, 2016.
9 Li Z M, Tasan C C, Pradeep, K G, et al. Acta Materialia, 2017, 131, 323.
10 Gludovatz B, Hohenwarter A, Catoor D, et al. Science, 2014, 345(6201), 1153.
11 Tang Z, Yuan T, Tsai C W, et al. Acta Materialia, 2015, 99, 247.
12 Hemphill M A, Yuan T, Wang G Y, et al.Acta Materialia, 2012, 60(16), 5723.
13 Zhang Y, Zuo T T, Tang Z, et al.Progress in Materials Science, 2014, 61, 1.
14 Chou Y L, Wang Y C, Yeh J W, et al.Corrosion Science, 2010,52(10),3481.
15 Kai W, Li C C, Cheng F P, et al.Corrosion Science,DOI:10.1016/J.CORSCI.2016.03.020.
16 Senkov O N, Wilks G B, Scott J M, et al.Intermetallics, 2011, 19(5), 698.
17 Senkov O N, Wilks G B, Miracle D B, et al. Intermetallics, 2010, 18(9), 1758.
18 Senkov O N, Miracle D B, Chaput K J, et al. Journal of Materials Research, 2018,33(19), 3092.
19 Ye Y F, Wang Q, Lu J, et al.Materials Today, 2016, 19(6), 349.
20 Cantor B, Chang I T H, Knight P, et al.Materials Science and Enginee-ring: A, 2004, 375-377, 213.
21 Cantor B.Entropy, 2014, 16(9), 4749.
22 Zhao H C, Liang X B, Qiao Y L, et al. Journal of Aeronautical Mate-rials, 2018, 39(5), 61(in Chinese).
赵海朝,梁秀兵,乔玉林,等.航空材料学报, 2018, 39(5), 61.
23 Yu P F, Zhang L J, Ning J L, et al. Materials Letters, 2017, 196, 137.
24 Gupta M, Tun K. Research & Development in Material Science, 2017, 2, 9.
25 Amit K, Manoj G.Metals, 2016,6(9), 199.
26 Sanchez J, Vicario I, Albizuri J, et al.Metals, 2018, 8(3), 167.
27 Senkov O N, Senkova S V, Woodward C, et al.Acta Materialia, 2013, 61(5), 1545.
28 Feng R, Gao M, Lee C, et al.Entropy, 2016,18(9), 333.
29 Gao M, Alman D,Entropy, 2013, 15(12), 4504.
30 Islam N, Huang W, Zhuang H L.Computational Materials Science, 2018, 150, 230.
31 Ye Y F, Wang Q, Lu J, et al.Scripta Materialia, 2015, 104, 53.
32 Zhang Y, Zhou Y J, Lin J P, et al. Advanced Engineering Materials, 2008, 10(6), 534.
33 Zhang Y, Lu Z P, Ma S G, et al.MRS Communications, 2014, 4(2), 57.
34 Guo S, Ng C, Lu J, et al.Journal of Applied Physics, 2011, 109(10),213.
35 Yang X, Zhang Y.Materials Chemistry and Physics, 2012, 132(2-3), 233.
36 Youssef K M, Zaddach A J, Niu C N, et al.Materials Research Letters, 2015, 3(2), 95.
37 Stepanov N D, Shaysultanov D G, Salishchev G A, et al.Materials Letters, 2015, 142, 153.
38 Yang X, Chen S, Cotton J, et al.JOM, 2014, 66(10), 2009.
39 Yang X, Chen S Y, Cotton J D, et al.JOM, 2014, 66(10), 2009.
40 Stepanov N D, Yurchenko N Y, Skibin, D V, et al.Journal of Alloys and Compounds, 2015, 652, 266.
41 Stepanov N D, Yurchenko N Y, Panina E S, et al.Materials Letters, 2017, 188, 162.
42 Qiu Y, Hu Y J, Taylor A, et al. Acta Materialia, 2017, 123, 115.
43 Jia Y F, Jia Y D, Wu S W, et al.Materials, 2019, 12(7), 1136.
44 Stepanov N, Yurchenko, N Y, Shaysultanov D, et al.Materials Science and Technology, 2015, 31(10), 1184.
45 Feng R, Gao M C, Lee C, et al. Entropy, 2016, 18(9), 333.
46 Sun W, Huang X, Luo A A.Calphad, 2017, 56, 19.
47 Maulik O, Kumar V.Materials Characterization, 2015, 110, 116.
48 Maulik O, Kumar D, Kumar S, et al. Intermetallics, 2016, 77, 46.
49 Chen Y L, Tsai C W, Juan C C, et al.Journal of Alloys and Compounds, 2010, 506(1), 210.
50 Zhao K, Xia X X, Bai H Y, et al.Applied Physics Letters, 2011, 98(14),141913, 1.
51 Li H F, Xie X H, Zhao K, et al. Acta BiomaterIalia, 2013, 9(10), 8561.
52 Stepanov N, Yurchenko N Y, Skibin D, et al. Journal of Alloys and Compounds, 2015, 652, 266.
53 Yurchenko N Y, Stepanov N, Gridneva A, et al.Journal of Alloys and Compounds, 2018, 757, 403.
54 Feng R, Gao M C, Zhang C, et al. Acta Materialia, 2018, 146, 280.
55 Stepanov N D, Yurchenko N Y, Sokolovsky V S, et al.Materials Letters, 2015, 161, 136.
56 Hammond V H, Atwater M A, Darling K A, et al.JOM, 2014, 66(10), 2021.
57 Li R, Gao J C, Fan K.Materials Science Forum, 2010, 650, 265.
58 Li H F, Xie X H, Zhao K, et al.Acta Biomaterial, 2013, 9(10), 8561.
59 Tseng K, Yang Y, Juan C, et al. Science China Technological Sciences, 2018, 61(2), 184.
60 Sanchez J M, Vicario I, Albizuri J, et al.Journal of Materials Research and Technology, 2019, 8(1), 795.
61 Du X H, Wang R, Chen C, et al.Key Engineering Materials, 2017, 727, 132.
62 Zhang X, Ye H, Huang J C, et al.Materials, 2019, 13(1), 36.
63 Huang X, Miao J, Luo A A, Journal of Materials Science, 2019, 54(3), 2271.
64 O'Brien S, Esteves L, Birbilis N, et al.https://doi.org/10.1149/osf.io/ew86m,2020.
65 Esmaily M, Qiu Y, Bigdeli S, et al.https://doi.org/10.1149/osf.io/mrek9, 2020.
66 Qiu Y, Thomas S, Gibson M A, et al.Corrosion Science, 2018, 133, 386.
[1] 吕展衡, 陈品鸿, 许冰, 罗颖, 周武艺, 董先明. 巯基-双键点击反应制备光固化红光转光膜及其性能[J]. 材料导报, 2020, 34(Z1): 111-115.
[2] 王枭, 郭伟, 胡月阳, 陈芹, 仇佳琳, 李正阳, 陈佳彬, 管荣成. 硫硅酸钙的合成及水化性能的研究[J]. 材料导报, 2020, 34(Z1): 169-172.
[3] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[4] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[5] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[6] 宋文杰, 刘洁, 董会萍, 张光, 王彤. 超轻镁锂合金熔炼工艺研究[J]. 材料导报, 2020, 34(Z1): 316-321.
[7] 黄同瑊, 晁代义, 宋晓霖, 张伟, 王志雄, 张华, 吕正风. 热轧工艺对Al-Cu-Mg合金组织及性能的影响[J]. 材料导报, 2020, 34(Z1): 322-324.
[8] 秦笑, 王娟, 林高用, 郑开宏, 王海艳, 冯晓伟. 镀铜石墨/铜复合材料的组织和摩擦磨损性能[J]. 材料导报, 2020, 34(Z1): 380-384.
[9] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[10] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[11] 徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰. 无磁金属陶瓷的研究进展[J]. 材料导报, 2020, 34(9): 9064-9068.
[12] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[13] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[14] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[15] 徐道芬, 陈康华, 胡桂云, 陈送义. 微量稀土Ce对Al-Zn-Mg铝合金组织和腐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8100-8105.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed