Please wait a minute...
材料导报  2022, Vol. 36 Issue (14): 21010231-7    https://doi.org/10.11896/cldb.21010231
  金属与金属基复合材料 |
钛合金/钢异种材料熔化焊研究现状
李帅1, 夏月庆2, 王星星1, 刘中英1, 吴港1, 董红刚3, 贾连辉4
1 华北水利水电大学河南省高效特种绿色焊接国际联合实验室,郑州 450045
2 河南农业大学机电工程学院,郑州 450002
3 大连理工大学材料科学与工程学院,辽宁 大连 116024
4 中铁工程装备集团有限公司,郑州 450016
Research Status for the Fusion Welding Between Titanium Alloy and Steel
LI Shuai1, XIA Yueqing2, WANG Xingxing1, LIU Zhongying1, WU Gang1, DONG Honggang3, JIA Lianhui4
1 Henan International Joint Laboratory of High-efficiency Special Green Welding and Additive Manufacturing, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
2 College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
3 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
4 China Railway Engineering Equipment Group Co., Ltd., Zhengzhou 450016, China
下载:  全 文 ( PDF ) ( 7204KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钛合金具有比强度高、耐腐蚀和耐高温等优点,但其推广应用受限于高制造成本。而钢是应用最广泛的传统结构材料,具有制造成本低、力学性能优异等优点,但其具有高温可靠性且耐蚀性较差、密度比较大。钛合金/钢异种材料的高可靠性连接能充分发挥两种材料在性能和经济上的优势互补,在航空航天、能源化工、海洋装备和医疗器械等诸多领域具有广阔的应用前景。因此,开展钛合金与钢连接方面的研究工作具有重大意义。钛合金和钢在物理化学性能方面的差异导致二者连接过程中存在诸多问题,主要集中于以下两个方面:(1)残余应力大。由于热膨胀系数的差异性,钛合金/钢异质材料连接接头会产生较大的残余应力,严重影响连接接头的可靠性。(2)脆性金属间化合物的形成。室温下,Fe在Ti中的固溶度极小(仅为0.05%~0.1%),而在钛合金/钢连接接头中容易形成一系列Fe-Ti脆性金属间化合物,造成接头脆化、韧性降低甚至开裂。近年来,研究人员通过改变连接工艺和制备合金化焊料等措施调控脆性金属间化合物的形成,改善接头的可靠性,取得了一些突破性进展。在诸多连接方法中,熔化焊方法具有焊前准备简单、生产效率高和连接件尺寸外形限制少等特点,是实现钛合金/钢异质金属高可靠性连接的主要焊接方式。本文总结了近年来采用熔化焊方法实现钛合金/钢连接的国内外研究成果,探讨了中间层种类、焊接参数对接头微观组织演变和力学性能变化的影响规律,讨论了钛合金/钢连接技术存在的问题,以期为钛合金/钢连接领域的研究和技术发展提供理论依据及技术参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李帅
夏月庆
王星星
刘中英
吴港
董红刚
贾连辉
关键词:  钛合金/钢  熔化焊  中间层  焊接参数    
Abstract: Titanium alloy has the advantages of high specific strength, corrosion resistance and high temperature resistance, but the widespread application of titanium alloy is restricted by its high manufacturing cost. Steel is the most widely-used traditional structural material, owing to its low manufacturing cost and excellent mechanical properties, but it has high temperature dependence, poor corrosion resistance, and relatively high density. On account of their complementary properties, combining titanium alloy with steel is ideal for the fabrication of materials with broad application prospects in the fields of aerospace engineering, energy and chemical industries, marine equipment, and medical equipment. Consequently, it is of great significance to study the mechanism involved in combining titanium alloy and steel. Due to the differences in physical and chemical properties between titanium alloy and steel, many issues arise during the combination process. The two main issues are as below: (Ⅰ) large residual stress due to the difference in thermal expansion coefficient and the combination of two dissimilar materials, which seriously affects the robustness of the connection joint; (Ⅱ) the formation of brittle intermetallic compounds, which means that a series of Fe-Ti brittle intermetallics are likely formed in titanium alloy/steel joints, with the extremely poor solid solubility of Fe in Ti (only 0.05% to 0.1%) at room temperature, leading to embrittlement, toughness reduction and even cracking of the connection joint. In recent years, some breakthroughs in regulating the formation of brittle intermetallics and improving the reliability of joints have been obtained by altering the combination process and preparation of alloyed filler metals. Among many methods for combining the two materials, fusion welding has the beneficial characteristics of simple pre-weld preparation, high production efficiency and less size limitation of the connecting parts; thus, it is the main welding method used for achieving a highly reliable connection of titanium alloy with steel. The domestic and foreign research results of titanium alloy/steel welded joints by fusion welding method in recent years are summarized, along with the effect law of intermediate layer types and welding parameters on the evolution of microstructure and mechanical properties of the welded joints. Additionally, the problems of titanium alloy/steel connection technology are explored. The main purpose of this review is to provide a technical reference and theoretical basis for research and technological development in the fields of employing titanium alloy/steel connections.
Key words:  titanium alloy/steel    fusion welding    intermediate layer    welding parameter
发布日期:  2022-07-26
ZTFLH:  TG425  
基金资助: 国家自然科学基金(52071165);河南省优秀青年科学基金项目(202300410268);河南省自然科学基金青年基金(202300410272)
通讯作者:  lyctlishuai@163.com   
作者简介:  李帅,华北水利水电大学机械学院副教授、硕士研究生导师。2018年9月获得大连理工大学材料加工工程专业博士学位。主要从事先进材料连接工艺及冶金机理、材料腐蚀与防护方面的研究工作。近年来在Corrosion Science,Materials & Design, Journal of Materials Processing Technology, Journal of Alloys and Compounds, Journal of Manufacturing Processes等期刊发表论文20余篇。
引用本文:    
李帅, 夏月庆, 王星星, 刘中英, 吴港, 董红刚, 贾连辉. 钛合金/钢异种材料熔化焊研究现状[J]. 材料导报, 2022, 36(14): 21010231-7.
LI Shuai, XIA Yueqing, WANG Xingxing, LIU Zhongying, WU Gang, DONG Honggang, JIA Lianhui. Research Status for the Fusion Welding Between Titanium Alloy and Steel. Materials Reports, 2022, 36(14): 21010231-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010231  或          http://www.mater-rep.com/CN/Y2022/V36/I14/21010231
1 Li L, Sun J K, Meng X J. Titanium Industry Progress, 2004, 21(5),19(in Chinese).
李梁,孙健科,孟祥军. 钛工业进展, 2004, 21(5), 19.
2 Zhou Y, Wen S F, Song B, et al. Materials & Design, 2016, 89, 1199.
3 Sun Y Q, Yang Z Y, Liang J X, et al. Journal of Iron and Steel Research, 2009, 21(6), 1(in Chinese).
孙永庆, 杨志勇, 梁剑雄, 等. 钢铁研究学报, 2009, 21(6), 1.
4 Wu G F, Sheng G M. Hot Working Technology, 2007, 36(3), 86(in Chinese).
伍光凤,盛光敏. 热加工工艺, 2007, 36(3), 86.
5 Zhou R L, Zhang J H, Tian X T. Welding & Joining, 1999(2), 9(in Chinese).
周荣林,张九海,田锡唐. 焊接, 1999(2), 9.
6 Zhang Y Y. Microstructure and mechanical property of TIG welded joints of titanium alloy/stainless steel. Master's Thesis, Harbin Institute of Technology, China, 2006(in Chinese).
张莹瑛. 钛合金/不锈钢TIG熔焊接头微观组织及力学性能分析.硕士学位论文, 哈尔滨工业大学, 2006.
7 Li J L, Li F, Xiong J T, et al. Mechanical Science and Technology, 2006, 25(3), 301(in Chinese).
李京龙, 李锋, 熊江涛, 等. 机械科学与技术, 2006, 25(3), 301.
8 Ma Z, Wu W, Gao Z X, et.al. Journal of Chongqing University of Technology (Natural Science), 2021, 35(7), 108(in Chinese).
马桢, 吴伟, 高志雄, 等. 重庆理工大学学报(自然科学),2021, 35(7), 108.
9 Murray J L. ASM handbook: Alloy phase diagram (10th), ASM International, USA, 1992.
10 Li B F. Development and Application of Materials, 2004, 19(1), 41(in Chinese).
李标峰. 材料开发与应用, 2004, 19(1), 41.
11 Pasang T, Pramana S, Kracum M, et al. Metals, 2018, 8(11), 863.
12 Chu Q L.Fusion welding on TA1/Q345 Laminated structure and joint microstructure evolution. Ph.D. Thesis, Xi'an University of Technology, China, 2017(in Chinese).
褚巧玲. TA1/Q345层状复合板焊接机理及其组织演变行为研究. 博士学位论文,西安理工大学, 2017.
13 Hao X, Li P, Xia Y, et al. Metallurgical and Materials Transactions A, 2018, 50(2), 688.
14 Hao X, Dong H, Li S, et al. Journal of Materials Processing Technology, 2018, 257,88.
15 Cheng Z, Huang J, Ye Z, et al. Journal of Materials Research and Technology, 2019, 8(1), 1566.
16 Zhang X M. Titanium Industry Progress, 2001(5), 20(in Chinese).
张小明. 钛工业进展, 2001(5), 20.
17 Pardal G, Ganguly S, Williams S, et al. The International Journal of Advanced Manufacturing Technology, 2016, 86(5-8),1139.
18 Hou G Y. Research on GTAW of Titanium and steel based on the weld metal high-entropy. Master's Thesis, Xi'an University of Technology, China, 2015(in Chinese).
候光远.基于焊缝金属高熵化的钛/钢TIG焊研究. 硕士学位论文,西安理工大学, 2015.
19 Chen S, Zhang M, Huang J, et al. Materials & Design, 2014, 53, 504.
20 Zhang Y, Sun D Q, Gu X Y, et al. Journal of Materials Engineering and Performance, 2018, 28(1),140.
21 Shanmugarajan B, Padmanabham G. Optics and Lasers in Engineering, 2012, 50(11), 1621.
22 Zhang S D, Wu J, Qi W B, et al. Corrosion Science, 2016, 110, 57.
23 Hosseini S R E, Feng K, Nie P, et al. Welding in the World, 2018, 62(5), 947.
24 Gao M, Chen C, Wang L, et al. Metallurgical and Materials Transactions A, 2015, 46(5), 2007.
25 Wang H Y, Li Q, Song G, et al. Chinese Journal of Lasers, 2016, 43(5), 44(in Chinese).
王红阳,李权,宋刚,等. 中国激光, 2016, 43(5), 44.
26 Zhang Y, Chen Y, Zhou J, et al. Optics & Laser Technology, 2020, 127, 106195.
27 Mitelea I, Groza C, Craciunescu C. Journal of Materials Engineering and Performance, 2013, 22(8), 2219.
28 Zhang Y, Sun D, Gu X, et al. Journal of Materials Engineering and Performance, 2019, 28(10), 6092.
29 Zhang Y, Sun D, Gu X, et al. Materials Letters, 2016, 185, 152.
30 Tomashchuk I, Grevey D, Sallamand P. Materials Science and Enginee-ring: A, 2015, 622, 37.
31 Zhang Y, Sun D Q, Gu X Y, et al. Materials Letters, 2018, 212, 54.
32 Lyu P. Microstructures and mechanical properties of laser welded tita-nium-steel joints with different interlyaers. Master's Thesis, Nanjing University of Science and Technology, China, 2017(in Chinese).
吕攀.不同中间层对钛-钢激光焊接焊缝组织与性能的影响. 硕士学位论文, 南京理工大学, 2017.
33 Cherepanov A N, Orishich A M, Mali V I. Combustion, Explosion, and Shock Waves, 2014, 50(4), 483.
34 Cherepanov A N, Orishich A M, Pugacheva N B, et al. Thermophysics and Aeromechanics, 2015, 22(2),135.
35 Gao M, Mei SW, Wang Z M, et al. Science and Technology of Welding and Joining, 2013, 17(4), 269.
36 Hiraga H, Fukatsu K, Ogawa K, et al. Welding International, 2002, 16(8), 623.
37 Mohi Z, Liman M A, Rahman M R A, et al. Applied Mechanics and Materials, 2014, 465-466, 1060.
38 Zhang Y, Bi Y, Zhou J, et al. Materials Letters, 2020, 274, 128012.
39 Zhang H B, Zhang L J, Liu J Z, et al. Journal of Materials Research and Technology, 2020, 9(5),10498.
40 Zhang Y, Gao Y, Zhou J, et al. Metals and Materials International, 2021, 27, 1224.
41 Hao X, Dong H, Xia Y, et al. Journal of Alloys and Compounds, 2019, 803, 649.
42 Wang T, Zhang B, Feng J, et al. Materials Characterization, 2012, 73, 104.
43 Tomashchuk I, Sallamand P, Belyavina N, et al. Materials Science and Engineering: A, 2013, 585, 114.
44 Tomashchuk I, Sallamand P, Andrzejewski H, et al. Intermetallics, 2011, 19(10), 1466.
45 Wang T, Zhang B G, Feng J C. Transactions of Nonferrous Metals Society of China, 2014, 24(1), 108.
46 Wang T, Zhang B, Wang H, et al. Journal of Materials Engineering and Performance, 2014, 23(4), 1498.
47 Wang Y R, Fan Y L, Yu Y. Rare Metal Materials and Engineering, 2018, 47(1), 329(in Chinese).
王亚荣, 樊亚丽,余洋. 稀有金属材料与工程, 2018, 47(1),329
48 Song T F, Zhang J L, Yang T G, et al. Materials Research Express, 2019, 6(9), 965.
49 Wang T, Zhang B, Chen G, et al. Vacuum, 2013, 94, 41.
[1] 王铁军, 张龙戈, 车洪艳, 董浩, 郑天明, 周双双, 王学远. Cu中间层对GH4099与Mo-Cu合金HIP扩散焊接头的影响[J]. 材料导报, 2021, 35(2): 2098-2102.
[2] 吴正刚, 李熙, 李忠涛. 高熵合金应用于异种金属焊接的研究现状及发展趋势[J]. 材料导报, 2021, 35(17): 17031-17036.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed