Please wait a minute...
材料导报  2021, Vol. 35 Issue (17): 17031-17036    https://doi.org/10.11896/cldb.21060252
  高熵合金 |
高熵合金应用于异种金属焊接的研究现状及发展趋势
吴正刚, 李熙, 李忠涛
湖南大学材料科学与工程学院,长沙 410082
Research Status on the Application of High-entropy Alloys in Dissimilar Metal Welding
WU Zhenggang, LI Xi, LI Zhongtao
College of Materials Science and Engineering, Hunan University, Changsha 410082, China
下载:  全 文 ( PDF ) ( 4792KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,基于国内外对降低能耗的需求,“轻量化”在制造工业中受到广泛的重视。异种金属焊接可以综合发挥不同材料的性能优势,成为实现“轻量化”的有效途径。然而,在多数异种金属连接接头处会形成硬而脆的金属间化合物 (IMC),严重降低焊接接头的强度和韧性。高熵合金兼具高熵效应与迟滞扩散效应,使其具有作为中间层材料或者钎料应用于异种金属连接以改善IMC带来的问题的巨大潜力。本文综述了近年来将高熵合金作为异种金属焊接中间层材料/钎料的相关探索性研究,重点关注高熵合金对焊接界面IMC的产生、微观组织和焊接接头力学性能的影响。综合分析相关研究,结合分析作为金属基复合材料增强体以及与铝合金、钢和钛合金等传统材料的异种金属焊接时所产生的高熵合金/传统金属界面组织特征,指出高熵合金确有作为中间层材料/钎料应用于不同类型异种金属焊接的潜力。为了推进高熵合金在这一方向上的应用,需要开展更加系统和深入的机理性研究以揭示高熵合金改善界面组织的机理,并针对不同异种金属体系优化出高熵合金中间层材料/钎料成分;此外,有必要开展“放大”研究以模拟实际工况下的作用效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴正刚
李熙
李忠涛
关键词:  异种金属焊接  高熵合金  中间层材料  金属间化合物    
Abstract: Manufacturing industry has been pursuing “light-weighting” to reduce energy consumption. Property advantages of different materials can be well merged in a dissimilar metal welds/joints; thus dissimilar metal welding is one of the most effective approaches to achieving “light-weighting”. However, hard and brittle intermetallic compounds (IMCs) tend to form at the welding interfaces and to significantly reduce the strength and toughness of the welds. The formation of interface IMC would be prohibited or even avoided by using high entropy alloys (HEAs) as “interlayer” materials during dissimilar metal welding/joining. This possibility is a result of the synergistic cooperation of HEAs’ high entropy effect and sluggish diffusion effect. Current explorations on the application of HEAs in this area are reviewed in the present paper, focusing on the effects of HEAs on the IMC formation, microstructure and mechanical properties of the joints. Despite the great potential, more fundamental stu-dies are needed to mechanistically understand the effects of HEAs on the microstructure and mechanical properties of different weld interfaces. In addition, studies should be gradually switched from laboratory-scale materials to industry-scale materials to further promote the application.
Key words:  dissimilar metal welding    high entropy alloy    intermediate layer material    intermetallic compound
                    发布日期:  2021-09-26
ZTFLH:  TG156  
基金资助: 国家自然科学基金 (51901077)
通讯作者:  zwu9@hnu.edu.cn   
作者简介:  吴正刚,湖南大学材料科学与工程学院教授,博士研究生导师。2008年本科毕业于中南大学,2014年博士毕业于美国田纳西大学,之后分别在田纳西大学和美国橡树岭国家实验室从事博士后研究。主要研究方向为传统及先进金属结构材料的设计与开发,同种/异种金属焊接性能分析与焊接过程优化。
引用本文:    
吴正刚, 李熙, 李忠涛. 高熵合金应用于异种金属焊接的研究现状及发展趋势[J]. 材料导报, 2021, 35(17): 17031-17036.
WU Zhenggang, LI Xi, LI Zhongtao. Research Status on the Application of High-entropy Alloys in Dissimilar Metal Welding. Materials Reports, 2021, 35(17): 17031-17036.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060252  或          http://www.mater-rep.com/CN/Y2021/V35/I17/17031
1 Huang B S, Huang L P, Li H. Materials Reports, 2011, 25(23), 118(in Chinese).
黄本生, 黄龙鹏, 李慧. 材料导报, 2011, 25(23), 118.
2 Zhou G W, Wang W B. Electric Welding Machine, 2020, 50(12), 65(in Chinese).
邹国伟, 王伟波. 电焊机, 2020, 50(12), 65.
3 Long J Q, Lan F C, Chen J Q. Chinese Journal of Mechanical Enginee-ring,2008, 44(6), 27(in Chinese).
龙江启, 兰凤崇, 陈吉清.机械工程学报, 2008, 44(6), 27.
4 Zhuo Y M, Chen Y H, Yang C L. Aeronautical Manufacturing Technology, 2021, 64(8), 22(in Chinese).
卓义民, 陈远航, 杨春利. 航空制造技术, 2021, 64(8), 22.
5 Wang Z, Wang M.Welding, 2016(6), 13(in Chinese).
王泽, 王敏.焊接, 2016(6), 13.
6 Lim Y C, Squires L, Pan T Y, et al. Science and Technology of Welding and Joining, 2017, 22(6), 455.
7 Ma H, Qin G, Ao Z, et al. Journal of Materials Processing Technology, 2018, 252, 595.
8 Zhao S, Ni J, Wang G, et al. Journal of Materials Processing Technology, 2018, 261, 39.
9 Mahto R P, Gupta C, Kinjawadekar M, et al. Journal of Manufacturing Processes, 2019, 38, 370.
10 Xia H, Zhao X, Tan C, et al. Journal of Materials Processing Technology, 2018, 258, 9.
11 Song J, Lin S, Yang C, et al.Journal of Alloys and Compounds, 2009, 488(1), 217.
12 Meshram S D, Reddy G M.Defence Technology, 2015, 11(3), 292.
13 Reddy M G, Rao SA, Mohandas T.Science and Technology of Welding and Joining, 2013, 13(7), 619.
14 Aceves S M, Espinosa-Loza F, Elmer J W, et al. International Journal of Hydrogen Energy, 2015, 40(3), 1490.
15 Haddadi F.Materials Science and Engineering A, 2016, 678, 72.
16 Hsu C Y, Yeh J W, Chen S K, et al. Metallurgical and Materials Transactions A, 2004, 35(5), 1465.
17 Yeh S K, Lin S J, et al. Advanced Engineering Materials, 2004, 23(5), 1527.
18 Yeh J W. The Journal of the Minerals, 2015, 67, 2254.
19 Wu P H, Peng Z, Liu N, et al. Materials Transactions, 2016, 57, 5.
20 Wu P H, Liu N, Yang W, et al. Materials Science and Engineering: A, 2015, A642, 142.
21 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6, 299.
22 Cantor I B, Chang T H, Knight P, et al. Materials Science and Enginee-ring: A, 2004, 375, 213.
23 Lv Z P,Lei Z F, Huang H L. Acta Metallurgica Sinica,2018, 54(11),1553(in Chinese).
吕昭平, 雷智锋, 黄海龙等. 金属学报, 2018, 54(11), 1553.
24 Xu Z J, Li Z T, Wu Z G, et al. Journal of Materials Science and Technology, 2021, 60, 35.
25 Zhou P F, Xiao D H, Wu Z G, et al. Materials Science and Engineering: A, 2019, 739, 86.
26 Wu Z G, Bei H B, Otto F. Intermetallics, 2014, 46, 131.
27 Shiratori H, Fujieda T, Yamanaka K, et al. Materials Science and Engineering: A, 2016, 656, 39.
28 Wu Z G, David S A, Leonard D N, et al. Science and Technology of Welding and Joining, 2018, 23(5), 1.
29 Gali A, George E P.Intermetallics, 2013, 39, 74.
30 Tsai K Y, Tsai M H, Yeh J W. Acta Materialia, 2013, 61, 4887.
31 Jin K, Zhang C, Zhang F, et al. Materials Research Letters, 2018, 6(6), 293.
32 Senkov ON, Wilks GB, Miracle DB, et al. Intermetallics, 2010, 18, 1758.
33 Otto F, Dlouhy A, Somsen C, et al. Acta Materialia, 2013, 61, 5743.
34 Wu Z, Bei H, Pharr GM, et al. Acta Materialia, 2014, 81, 428.
35 Gludovatz B, Hohenwarter A, Catoor D, et al. Science, 2014, 345, 1153.
36 Wu Z, Parish C M, Bei H.The Journal of Alloys and Compounds, 2015, 647, 815.
37 Zhang Z, Mao M M, Wang J, et al. Nature Communications, 2015, 6, 10143
38 Gludovatz B, Hohenwarter A, Thurston K V S, et al. Nature Communications, 2016, 7, 10602.
39 Rost C M, Sachet E, Borman T, et al. Nature Communications, 2015, 6, 8485.
40 Li Z, Pradeep K G, Deng Y, et al. Nature, 2016, 534, 227.
41 Wu Z, Gao Y, Bei H.Acta Materialia, 2016, 120, 108.
42 Zou Y, Ma H, Spolenak R. Nature Communications, 2015, 6, 7748.
43 Wu Z G, David S A, Feng Z, et al. Scripta Materialia,2016, 124, 81.
44 Kashaev N, Ventzke V, Stepanov N, et al. Intermetallics, 2018, 96, 63.
45 Sokkalingam R, Mishra S, Cheethirala S R, et al. Metallurgical and Materials Transactions A, 2017, 48, 3630.
46 Li Y B, Ma Y W, Lou M, et al. Journal of Mechanical Engineering, 2020,56(6),125(in Chinese).
李永兵, 马运五, 楼铭等. 机械工程学报,2020,56(6),125.
47 Li Y B, Ma Y W, Lou M, et al. Journal of Mechanical Engineering,2016,52(4),1(in Chinese).
李永兵, 马运五, 楼铭等. 机械工程学报, 2016,52(4),1.
48 Li Y B, Ma Y W, Lou M, et al. Journal of Mechanical Engineering, 2012,48(18),44(in Chinese).
李永兵, 马运五, 楼铭等. 机械工程学报, 2012,48(18),48.
49 Massalski T B, Okamoto H, Subramanian P R, et al. Binary Alloy Phase Diagrams, vol. 1, ASM International, Materials Park, USA, 1990, p.147.
50 Naoi D, Kajihara M.Materials Science and Engineering: A, 2007, 459, 375.
51 Li R, Yuan T, Liu X, et al. Scripta Materialia, 2016, 110, 105.
52 Hamed A S, Mahmoud S K, Azadeh N B. Intermetallics, 2020, 124, 106876.
53 Fang D, Kang Y Y, Huang J K, et al. Journal of Lanzhou University of Technology, 2019, 45(6), 1(in Chinese).
樊丁, 康玉桃, 黄健康, 等. 兰州理工大学学报, 2019, 45(6), 1.
54 Liu D J, Wang J, Xu M B, et al. Journal of Manufacturing Processes, 2020, 58, 500.
55 Wang T, Zhang B, Chen G, et al. Vacuum, 2013, 94, 41.
56 Gao M, Mei S W, Wang Z M, et al. Science and Technology of Welding & Joining, 2016, 17 (4), 269.
57 Zhang Y, Sun D, Gu X, et al. Materials Letters, 2016, 185 (15), 152.
58 Hao X H, Dong H G, Xia Y P, et al. Journal of Alloys and Compounds, 2019, 803, 649.
59 Xu J F, Guo J B, Tian J, et al. Foundry Technology, 2014, 35(11), 2674(in Chinese).
徐锦峰, 郭嘉宝, 田健等. 铸造技术. 2014, 35(11), 2674.
60 Cheng K, Qu Q Y, Tian J,et al. Modern Welding, 2013, 8, 36(in Chinese).
陈凯, 瞿秋亚, 田健等. 现代焊接, 2013, 8, 36.
61 Ding W, Wang X N, Liu N, et al. Acta Metallurgiva Sinica, 2020, 56(8), 1084(in Chinese).
丁文, 王小京, 刘宁, 等.金属学报, 2020, 56(8), 1084.
62 Ding W, Liu N, Fan J C, et al. Intermetallics, 2021, 129, 107027.
63 Yang T F, Xia S Q Liu S et al. Materials Science and Engineering: A, 2015, 648, 11.
64 Lu Y P, Gao X Z, Li J, et al. Acta Materialia, 2017, 124, 143.
65 Karthik G M, Panikar S, Ram G D J, et al. Materials Science and Engineering: A, 2017, 679, 193.
66 Lu T, Scudino S, Chen W, et al. Materials Science and Engineering: A, 2018, 726, 126.
67 Meng G, Lin X, Xie H, et al. Journal of Alloys and Compounds, 2016, 672, 660.
68 Chen W , Li Z, Lu T, et al. Materials Science and Engineering: A, 2019, 762, 138116.
69 Adomako N K, Shin G, Park N, et al. Journal of Materials Science & Technology, 2021, 85, 95.
70 Sokkalingam R, Muthupandi V, Sivaprasad K, et al. Journal of Materials Research, 2019, 15, 2683.
71 Yao H, Wen H Y, Chen K, et al. Scripta Materialia, 2016, 201, 113972.
72 Nene S, Gupta S, Morphew C, et al. Materialia, 2020, 11, 100740.
73 Arab A, Guo Q, et al. Vacuum, 2020, 174, 109221.
74 Zhao D C, Yamaguchi T, Shu J F, et al. Applied Surface Science, 2020, 517, 145980.
75 Peng Y, Li J L, Shi J M, et al. The Journal of Materials Research and Technology, 2021, 11, 1741.
76 Lei Y, Hu S P, Yang, T L, et al. Journal of Materials Processing Technology, 2020, 278, 116455.
77 Li P, Wang S, Xia Y Q, et al. Journal of Materials Processing Technology, 2020, 45, 59.
78 Chen L, Wang Y Y, Hao X H, et al. Vacuum, 2021, 183, 109823.
[1] 张猛, 花福安, 赵巍. 基于机器学习的高熵合金生成相预测研究[J]. 材料导报, 2021, 35(Z1): 331-335.
[2] 梅金娜, 薛飞, 吴天栋, 卫娜, 蔡振. FeCrNiMn高熵合金本构方程的建立[J]. 材料导报, 2021, 35(Z1): 336-341.
[3] 田浩亮, 张晓敏, 金国, 朴钟宇, 王长亮, 郭孟秋, 杜修忻, 王天颖, 张昂, 肖晨兵. 电火花沉积高熵合金涂层的研究现状与展望[J]. 材料导报, 2021, 35(Z1): 342-346.
[4] 曾金成, 宋波, 左敦稳, 邓永芳. 外加辅助条件搅拌摩擦焊技术研究进展[J]. 材料导报, 2021, 35(7): 7162-7168.
[5] 王睿鑫, 唐宇, 李顺, 白书欣. 高熵合金动态载荷下变形机制的研究进展[J]. 材料导报, 2021, 35(17): 17001-17009.
[6] 李洪超, 王军, 袁睿豪, 王毅, 寇宏超, 李金山. AlCoCrFeNi系高熵合金的强化方法研究[J]. 材料导报, 2021, 35(17): 17010-17018.
[7] 张国家, 李忍, 刘德华, 卢一平, 王同敏, 李廷举. C对CoFe2NiV0.5Mo0.2高熵合金结构和力学性能的影响[J]. 材料导报, 2021, 35(17): 17026-17030.
[8] 王伟彤, 陈淑英, 张勇, 赵永好. 高熵合金强韧化方法及力学性能的研究进展[J]. 材料导报, 2021, 35(17): 17043-17050.
[9] 杜宇航, 丁德渝, 郭宁, 郭胜锋. 高熵合金功能特性研究进展[J]. 材料导报, 2021, 35(17): 17051-17063.
[10] 陈刚, 罗涛, 沈书成, 陶韬, 唐啸天, 薛伟. 难熔高熵合金的研究进展[J]. 材料导报, 2021, 35(17): 17064-17080.
[11] 文成, 莫湾湾, 田玉琬, 王贵, 胡杰珍. 高熵合金固溶强化问题的研究进展[J]. 材料导报, 2021, 35(17): 17081-17089.
[12] 樊丁, 李永鹏, 武利建, 黄健康, 刘世恩, 刘玉龙. 超声振动对铝/铜等离子弧熔钎焊接头组织及力学性能的影响[J]. 材料导报, 2021, 35(16): 16115-16119.
[13] 夏铭, 孙博, 王鑫, 梁秀兵, 沈宝龙. 高熵合金增材制造研究现状与展望[J]. 材料导报, 2021, 35(13): 13119-13127.
[14] 王龙, 胡德安, 陈益平, 程东海, 江淑园. 铝/铜异种材料交变磁场辅助电弧熔钎焊接头组织和性能[J]. 材料导报, 2021, 35(12): 12119-12122.
[15] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed