Please wait a minute...
材料导报  2021, Vol. 35 Issue (17): 17026-17030    https://doi.org/10.11896/cldb.21010131
  高熵合金 |
C对CoFe2NiV0.5Mo0.2高熵合金结构和力学性能的影响
张国家1, 李忍1, 刘德华2, 卢一平1, 王同敏1, 李廷举1
1 大连理工大学材料科学与工程学院,辽宁省凝固控制与数字化制备技术重点实验室,大连 116024
2 大连理工大学,辽宁省高熵合金材料工程研究中心,大连 116024
Effect of C on Microstructure and Mechanical Properties of CoFe2NiV0.5Mo0.2 High Entropy Alloy
ZHANG Guojia1, LI Ren1, LIU Dehua2, LU Yiping1, WANG Tongmin1, LI Tingju1
1 Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2 Material Engineering Research Center of High Entropy Alloy (Liaoning Province), Dalian 116024, China
下载:  全 文 ( PDF ) ( 7485KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究添加0%~10%(原子分数,下同) C对CoFe2NiV0.5Mo0.2高熵合金显微组织、相结构和室温力学性能的影响。研究结果表明,随着C含量的增加,合金的微观组织由单一面心立方结构(FCC)转变为FCC基体+V8C7碳化物纤维的共晶组织,再转变为FCC基体+粗大V8C7+针状MoC组织,在转变过程中合金的压缩屈服强度明显提升,并保持较高的塑性。其中添加6%C时,合金的屈服强度和硬度可达到900 MPa、270HV。研究结果显示,以C为代表的小原子半径元素可以作为间隙固溶元素或与金属元素相结合形成碳化物第二相来提高FCC结构高熵合金的强度,改善合金的综合力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张国家
李忍
刘德华
卢一平
王同敏
李廷举
关键词:  高熵合金  间隙固溶强化  碳化物强化  微观组织  力学性能    
Abstract: Effects of the addition of C with different molar fraction (0%—10%) on microstructure, phase structure and mechanical properties at room temperature of the CoFe2NiV0.5Mo0.2 high entropy alloy were investigated. The results show that with the increase of C content, the microstructure of alloy changed from a single face centered cubic structure (FCC) to eutectic structure (FCC matrix+V8C7 carbide fiber) and then to (FCC matrix+coarse V8C7+acicular MoC). The compressive yield strength of the alloy was improved significantly and remained good ductility simultaneously. When C content is 6%, the yield strength and hardness of the alloy can reach 900 MPa and 270HV respectively. The research results show that elements with small atomic radius represented by C can solubilize as interstitial element or combined with metal element to form carbide second phase, which can improve the FCC-structured high entropy alloy strength, thus optimizing its comprehensive mechanical properties.
Key words:  high entropy alloy    interstice solution strengthening    carbide strengthening    microstructure    mechanical property
                    发布日期:  2021-09-26
ZTFLH:  TG132.3  
基金资助: 国家重点研发计划项目(2019YFA0209901; 2018YFA0702901);国家自然科学基金(51822402; U20A20278);辽宁省“兴辽英才计划”项目(XLYC1807047);西北工业大学凝固技术国家重点实验室资助项目(SKLSP201902)
通讯作者:  luyiping@dlut.edu.cn   
作者简介:  张国家,2019年6月毕业于沈阳工业大学,获得硕士学位,目前在卢一平教授指导下攻读大连理工大学博士学位,主要从事高熵合金的成分设计、变形机制以及强韧化研究。
卢一平,大连理工大学材料科学与工程学院副院长,入选国家高端人才计划(2020)、科技部中青年科技创新领军人才(2020)、国家优青(2018)、首届“兴辽英才计划”辽宁省青年拔尖人才(2018)、大连市杰出青年基金获得者(2019)、大连市青年科技之星(2016)、中国材料研究学会凝固科学与技术分会理事/副秘书长、空间材料科学与技术分会理事,中国材料研究学会青年工作委员会常务理事,Acta Metallurgica Sinica (英文)期刊、《材料导报》《中国材料进展》《特种铸造及有色合金》期刊编委等。近5年谷歌学术总引用近3 000次,H指数28,高被引文章3篇,授权发明专利8项。获2018年度辽宁省自然成果学术成果奖(论文)一等奖、中国物理学会同步辐射分会“青年之光”论文奖;2019武汉中国材料学会“新材料国际趋势会”青年科学家论坛“优秀青年科学家奖”;2019中国材料大会 “非晶与高熵合金”分会“Outstanding Young Scientist”奖;获2015年度教育部技术发明一等奖(排4)、国家技术发明二等奖(排4)。目前主要从事高熵合金的成分设计理论以及工业化制备技术研究。
引用本文:    
张国家, 李忍, 刘德华, 卢一平, 王同敏, 李廷举. C对CoFe2NiV0.5Mo0.2高熵合金结构和力学性能的影响[J]. 材料导报, 2021, 35(17): 17026-17030.
ZHANG Guojia, LI Ren, LIU Dehua, LU Yiping, WANG Tongmin, LI Tingju. Effect of C on Microstructure and Mechanical Properties of CoFe2NiV0.5Mo0.2 High Entropy Alloy. Materials Reports, 2021, 35(17): 17026-17030.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010131  或          http://www.mater-rep.com/CN/Y2021/V35/I17/17026
1 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6, 299.
2 Qiao D X, Lu Y P, Tang Z Y, et al. International Journal of Hydrogen Energy, 2019, 44, 3527.
3 Zhang Y, Zuo T T, Tang Z, et al. Progress in Materials Science, 2014, 61, 1.
4 Miao J W, Liang H, Zhang A J, et al. Tribology International, 2021, 153, 106599.
5 Lu P, Saal J E, Olson G B, et al. Scripta Materialia, 2018, 153, 19.
6 Lu Y P, Huang H F, Gao X Z, et al. Journal of Materials Science & Technology, 2019, 35, 369.
7 Lu T W, He T B, Zhao P P, et al. Journal of Materials Processing Technology, 2021, 289, 116945.
8 Jiang H, Qiao D X, Lu Y P, et al. Scripta Materialia, 2019, 165, 145.
9 Gao X Z, Lu Y P, Zhang B, et al. Acta Materialia, 2017, 141, 59.
10 Lu Y P, Jiang H, Guo S, et al. Intermetallics, 2017, 91, 124.
11 Huang T D, Jiang L, Zhang C L, et al. Science China Technological Sciences, 2018, 61, 117.
12 Chen J, Yao Z H, Wang X B, et al. Materials Chemistry and Physics, 2018, 210, 136.
13 Chen L B, Wei R, Tang K, et al. Materials Science and Engineering A, 2018, 716, 150.
14 Wang Z W, Baker I, Guo W, et al. Acta Materialia, 2016, 120, 228.
15 Liu X W, Liu L, Liu G, et al. Metallurgical and Materials Transactions A, 2018, 49, 2151.
16 Wang M, Cui H, Zhao Y, et al. Materials & Design, 2019, 180, 107893.
17 Fang S C, Chen W P, Fu Z Q, et al. Materials & Design, 2014, 54, 973.
18 Cheng H, Wang H Y, Xie Y C, et al. Materials Science and Technology, 2017, 33, 2032.
19 Li J B, Gao B, Tang S, et al. Journal of Alloys and Compounds, 2018, 747, 571.
20 Li R, Ren J, Zhang G J, et al. Acta Metallurgica Sinica(English Letters), 2020, 33, 1046.
21 Jiang L, Lu Y P, Song M, et al. Scripta Materialia, 2019, 165, 128.
22 Bai L, Wang Y Z, Lv Y K, et al. Materials Reports A:Review Papers, 2020, 34(9), 17072(in Chinese).
白莉, 王宇哲, 吕煜坤, 等.材料导报:综述篇,2020,34(9),17072.
23 Wang Z W, Baker I, Guo W, et al. Acta Materialia, 2017, 126, 346.
[1] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[2] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[3] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
[4] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[5] 张猛, 花福安, 赵巍. 基于机器学习的高熵合金生成相预测研究[J]. 材料导报, 2021, 35(Z1): 331-335.
[6] 梅金娜, 薛飞, 吴天栋, 卫娜, 蔡振. FeCrNiMn高熵合金本构方程的建立[J]. 材料导报, 2021, 35(Z1): 336-341.
[7] 田浩亮, 张晓敏, 金国, 朴钟宇, 王长亮, 郭孟秋, 杜修忻, 王天颖, 张昂, 肖晨兵. 电火花沉积高熵合金涂层的研究现状与展望[J]. 材料导报, 2021, 35(Z1): 342-346.
[8] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[9] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[10] 姚刚, 刘衍腾, 邓云华, 续润洲, 赵伟. 钛合金蜂窝壁板楔形件静强度测试及失效模式分析[J]. 材料导报, 2021, 35(Z1): 367-370.
[11] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[12] 吴长军, 姚利丽, 周志嵩, 薛烽, 朱晨露. 钢件双镀ZAM合金镀层的组织及耐蚀性[J]. 材料导报, 2021, 35(Z1): 434-437.
[13] 曾小川, 李学军, 邓小云, 胡侨丹, 尤磊. SA508 Gr.4N钢的辐照脆化性能研究进展[J]. 材料导报, 2021, 35(Z1): 438-442.
[14] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[15] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed