Please wait a minute...
材料导报  2021, Vol. 35 Issue (17): 17043-17050    https://doi.org/10.11896/cldb.20080303
  高熵合金 |
高熵合金强韧化方法及力学性能的研究进展
王伟彤1, 陈淑英2, 张勇1, 赵永好3
1 南京理工大学材料科学与工程学院,格莱特纳米科技研究所,南京 210094
2 烟台大学精准材料高等研究院,烟台 264005
3 南京理工大学材料科学与工程学院,纳米异构材料中心,南京 210094
Research Progress of Strategies for Improving Strength-ductility Combinations and Mechanical Properties of High Entropy Alloys
WANG Weitong1, CHEN Shuying2, ZHANG Yong1, ZHAO Yonghao3
1 School of Materials Science and Engineering, Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
2 Institute for Advanced Studies in Precision Materials, Yantai University, Yantai 264005, China
3 School of Materials Science and Engineering, Nano and Heterogeneous Materials Center, Nanjing University of Science and Technology, Nanjing 210094, China
下载:  全 文 ( PDF ) ( 9953KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 自高熵合金被首次报道以来,其优异的力学性能引起了国内外学者的广泛关注。高熵合金的高强度、高硬度、高耐磨性、耐腐蚀性以及其在极端温度下的服役能力,都表明高熵合金在未来工业应用中具有巨大潜力。随着对高熵合金的深入研究,从元素比例的改变到元素种类的改变再到新组元的添加,每一次高熵合金力学性能的优化与发展均伴随着结构的改变。尽管如此,高熵合金的力学性能依旧有很大的提升空间。因此,如何合理设计高熵合金的微观结构、提升其力学性能是当前研究的热点问题。
在高熵合金中,已存在的强韧化方法有细晶强化、固溶强韧化、共晶组织强韧化、孪生诱导塑性(Twinning induced plasticity,TWIP)效应强韧化、相变诱导塑性(Transformation induced plasticity,TRIP)效应强韧化和第二相强韧化等。其中,细晶强化与第二相强化在绝大多数高熵合金中都存在且很容易通过热机械处理来实现。因此,如何在强化机理、组织特征、力学性能三者之间建立联系,是当前亟待解决的问题。
本文归纳了高熵合金强韧化方法的研究进展,从高熵合金的优秀力学性能入手,分别介绍了固溶强化、短程有序(Short-range ordering,SRO)强化、γ′相强化、晶粒异构强韧化等结构设计理念,并且讨论了各种结构对高熵合金变形机制和力学性能的影响,分析了当前高熵合金的发展前景,以期为后续关于组织特征与力学性能建立有效联系提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王伟彤
陈淑英
张勇
赵永好
关键词:  高熵合金  异构结构  力学性能    
Abstract: Since the high entropy alloy has been reported for the first time, its excellent mechanical properties have attracted wide attention from all over the world. The superior strength, high hardness, good resistance to wear and corrosion of the high entropy alloy and its excellent service ability at extreme temperatures illustrate that the high entropy alloy has great potential in industrial applications in the future. With the increasing investigation of high entropy alloys, from the variation of elemental types, and the proportion of principal elements, the optimization and development of mechanical properties of high entropy alloys are accompanied by structural changes. Nevertheless, the mechanical properties of high entropy alloys still have much room for improvement. Therefore, how to rationally design the composition and microstructure and enhance the mechanical properties of high entropy alloys is a hot topic at present.
In high entropy alloys, the existing strengthening and toughening methods include fine-grained strengthening, solid solution strengthening and toughening, eutectic structure strengthening and toughening, TWIP (twinning induced plasticity) effect strengthening and toughening, TRIP (transformation induced plasticity) effect strengthening and toughening, and precipitate strengthening and toughening. Fine-grained strengthening and precipitate strengthening exist in most high entropy alloys and it is easy to achieve by thermomechanical treatment. Therefore, how to establish the correlation between the strengthening mechanisms, microstructural characteristics and mechanical properties is a critical issue at present.
In present paper, the research progress of strengthening and toughening methods in high entropy alloys is summarized, and the design concepts of solid solution strengthening, SRO (short-range ordering) strengthening, precipitate strengthening and heterogeneous strengthening and toughening were introduced as well. We also discuss the effect of various special structures on the deformation mechanism and mechanical pro-perties of high entropy alloy. The problems and development prospects of the high entropy alloy in the research process are also analyzed, in order to provide important reference for the subsequent establishment of effective connection between the microstructural characteristics and the mechanical properties.
Key words:  high entropy alloy    heterogeneous microstructure    mechanical property
                    发布日期:  2021-09-26
ZTFLH:  TG14  
基金资助: 国家重点基础研究发展计划项目(2017YFA0204403);国家自然科学基金项目(51601091;51971112);江苏省自然科学基金青年基金项目(BK20160826);江苏省“六大人才高峰”高层次人才资助(2017-XCL-051);中央高校基本科研业务费专项资金(30917011106;30919011405)
通讯作者:  yong@njust.edu.cn   
作者简介:  王伟彤,2019年6月毕业于南京理工大学,获工学学士学位。现为南京理工大学材料科学与工程学院硕士研究生,在张勇教授的指导下进行研究。
张勇,南京理工大学格莱特纳米科技研究所教授。2004年7月本科毕业于南京理工大学材料科学与工程系,2010年7月在中国科学院金属研究所取得材料学博士学位,2010年9月—2013年9月在美国约翰霍普金斯大学机械工程系从事博士后研究,2013年9月—2015年5月在美国约翰霍普金斯大学机械工程系和极端环境材料研究所担任研究科学家。主要从事纳米结构金属材料力学性能研究,相关研究结果发表在Acta Materialia, Materials Research Letters, Materials Today, Scripta Materialia, Advanced Functional Materials等材料类期刊。
引用本文:    
王伟彤, 陈淑英, 张勇, 赵永好. 高熵合金强韧化方法及力学性能的研究进展[J]. 材料导报, 2021, 35(17): 17043-17050.
WANG Weitong, CHEN Shuying, ZHANG Yong, ZHAO Yonghao. Research Progress of Strategies for Improving Strength-ductility Combinations and Mechanical Properties of High Entropy Alloys. Materials Reports, 2021, 35(17): 17043-17050.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080303  或          http://www.mater-rep.com/CN/Y2021/V35/I17/17043
1 Cantor B, Chang I T H, Knight P, et al. Materials Science & Engineering A, 2004, 375-377, 213.
2 Chen T K, Shun T T, Yeh J W, et al. Surface & Coatings Technology, 2004, 188-189, 193.
3 Hsu C Y, Yeh J W, Chen S K, et al. Metallurgical and Materials Transactions A, 2004, 35(5), 1465.
4 Yeh J W, Lin S J, Chen T S, et al. Metallurgical & Materials Transactions A, 2004, 35(8), 2533.
5 Tong C J, Chen M R, Yeh J W, et al. Metallurgical & Materials Tran-sactions A, 2005, 36(5), 1263.
6 Thurston K V S, Gludovatz B, Hohenwarter A, et al. Intermetallics, 2017, 88, 65.
7 Lu C, Niu L, Chen N, et al. Nature Communications, 2016, 7, 13564.
8 Chuang M H, Tsai M H, Wang W R, et al. Acta Materialia, 2011, 59(16), 6308.
9 Yeh J W. Annales De Chimie-Science Des Materiaux,2006,31(6),633.
10 Ye Y F, Wang Q, Lu J, et al. Intermetallics, 2015, 59, 75.
11 Yeh J W, Chang S Y, Hong Y D, et al. Materials Chemistry and Phy-sics, 2007, 103(1), 41.
12 Zhang Y, Zuo T, Tang Z, et al. Progress in Materials Science, 2014, 61, 1.
13 Li J G, Huang R R, Zhang Q, et al. Chinese Journal of Theoretical and Applied Mechanics,2020, 52(2), 333(in Chinese).
李建国, 黄瑞瑞, 张倩, 等. 力学学报, 2020, 52(2), 333.
14 Yang M, Liu X J, Wu Y, et al. Scientia Sinica (Physica,Mechanica & Astronomica), 2020,50(6),067003(in Chinese).
杨铭, 刘雄军, 吴渊, 等. 中国科学:物理学 力学 天文学, 2020,50(6),067003.
15 Ranganathan S.Current Science, 2003, 85(10), 1404.
16 George E P, Curtin W A, Tasan C C. Acta Materialia, 2020, 188, 435.
17 Lyu Z P, Lei Z F, Huang H L, et al. Acta Metallurgica Sinica,2018,54(11),1553(in Chinese).
吕昭平, 雷智锋, 黄海龙, 等. 金属学报,2018,54(11),1553.
18 Yurchenko N Y, Stepanov N D, Shaysultanov D G, et al. Materials Characterization, 2016, 121, 125.
19 Li R, Ren J, Zhang G J, et al. Acta Metallurgica Sinica (English Letters), 2020, 33, 1046.
20 Li Z M, Pradeep K G, Deng Y, et al. Nature, 2016, 534, 227.
21 Zhao S F, Yang G N, Ding H Y, et al. Intermetallics, 2015, 61, 47.
22 Zhao S F, Shao Y, Liu X, et al. Materials Design, 2015, 87, 625.
23 Li C, Li Q, Li M, et al. Journal of Alloys & Compounds,2019,791,947.
24 Liang Y J, Wang L J, Wen Y R, et al. Nature Communications, 2018, 9(1), 299.
25 Shukla S, Choudhuri D, Wang T, et al. Materials Research Letters, 2018, 6(12), 676.
26 Lei Z F, Liu X J, Wu Y. Nature, 2018, 563, 546.
27 Zhang R P, Zhao S T, Ding J, et al. Nature, 2020, 581, 238.
28 Zheng F K, Zhang G N, Chen X J, et al. Materials Science & Enginee-ring A, 2020, 774, 138940.
29 He J Y, Wang H, Huang H L, et al. Acta Materialia, 2016, 102, 187.
30 Liang Y J, Wang L J, Wen Y R, et al. Nature Communications, 2018, 9(1), 299.
31 Yang T, Zhao Y L, Tong Y, et al. Science, 2018, 362(6417), 933.
32 Yang M X, Yan D S, Yuan F P, et al. Proceedings of the National Aca-demy of Sciences of the United States of America, 2018, 115(28), 7224.
33 Sunkari U, Reddy S R, Rathod B D S, et al. Scientific Reports, 2020, 10(1), 6506.
34 Du X H, Li W P, Chang H T, et al. Nature Communications, 2020, 11(1), 2390.
35 Yang T, Zhao Y L, Li W P, et al. Science, 2020, 369, 427.
36 Jiang L, Lu Y P, Song M, et al. Scripta Materialia, 2019, 165, 128.
37 Yang M B, Shen W W, Zhong L X, et al. Journal of Chongqing University of Technology (Nature Science), 2019, 33(3) ,143(in Chinese).
杨明波, 沈威武, 钟罗喜,等. 重庆理工大学学报(自然科学), 2019, 33(3),143.
38 Liu S, Wu Y, Wang H T, et al. Intermetallics, 2018, 93, 269.
39 Zhao Y J, Qiao J W, Ma S G, et al. Materials & Design, 2016, 96, 10.
40 Huang H L, Wu Y, He J Y, et al. Advanced Materials, 2017, 29(30), 1701678.
41 Ge S F, Fu H M, Zhang L, et al. Materials Science & Engineering A, 2020, 784, 139275.
42 Yen C C, Huang G R, Tan Y C, et al. Journal of Alloys and Compounds, 2020, 818, 152876.
43 Hu G W, Zeng L C, Du H, et al. Journal of Materials Science & Technology, 2020, 54, 196.
44 Chang R B, Fang W, Bai X, et al. Journal of Alloys and Compounds, 2019, 790, 732.
45 Ma E. Scripta Materialia, 2020, 181,127.
46 Ding Q, Zhang Y, Chen X, et al. Nature, 2019, 574, 223.
47 Wu Y, Zhang F, Yuan X Y. Journal of Materials Science & Technology, 2021, 62, 214.
48 Gao X Z, Lu Y P, Liu J Z. Materialia, 2019, 8, 100485.
49 Liu X S, Zhang M D, Ma Y M, et al. Materials Science & Engineering A, 2020, 776, 139028.
50 Sathiyamoorthi P, Moon J, Bae J W, et al. Scripta Materialia,2019,163, 152.
51 Bian B B, Guo N, Yang H J, et al. Journal of Alloys and Compounds, 2020, 827, 153981.
52 Zhu Y T, Wu X L. Materials Research Letters, 2019, 7(10), 393.
53 Ma E, Wu X L. Nature Communications, 2019, 10, 5623.
[1] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[2] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[3] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
[4] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[5] 张猛, 花福安, 赵巍. 基于机器学习的高熵合金生成相预测研究[J]. 材料导报, 2021, 35(Z1): 331-335.
[6] 梅金娜, 薛飞, 吴天栋, 卫娜, 蔡振. FeCrNiMn高熵合金本构方程的建立[J]. 材料导报, 2021, 35(Z1): 336-341.
[7] 田浩亮, 张晓敏, 金国, 朴钟宇, 王长亮, 郭孟秋, 杜修忻, 王天颖, 张昂, 肖晨兵. 电火花沉积高熵合金涂层的研究现状与展望[J]. 材料导报, 2021, 35(Z1): 342-346.
[8] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[9] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[10] 姚刚, 刘衍腾, 邓云华, 续润洲, 赵伟. 钛合金蜂窝壁板楔形件静强度测试及失效模式分析[J]. 材料导报, 2021, 35(Z1): 367-370.
[11] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[12] 曾小川, 李学军, 邓小云, 胡侨丹, 尤磊. SA508 Gr.4N钢的辐照脆化性能研究进展[J]. 材料导报, 2021, 35(Z1): 438-442.
[13] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[14] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[15] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed