Please wait a minute...
材料导报  2021, Vol. 35 Issue (17): 17051-17063    https://doi.org/10.11896/cldb.21030186
  高熵合金 |
高熵合金功能特性研究进展
杜宇航, 丁德渝, 郭宁, 郭胜锋
西南大学材料与能源学院, 重庆 400715
The Progress of High-entropy Alloys with the Functional Properties
DU Yuhang, DING Deyu, GUO Ning, GUO Shengfeng
School of Materials and Energy, Southwest University, Chongqing 400715, China
下载:  全 文 ( PDF ) ( 3796KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 传统合金大多以一种主元为基础,通过添加少量或微量特定元素形成不同类型的合金来改善材料的综合性能,但这显然限制了它们新性能的发展。因此,必须开发非常规合金以满足日益增长的需求。高熵合金(High-entropy alloys,HEAs)是近年来发现的一种新型多组元金属材料,因具有独特的设计理念、组织结构以及优异的性能,其在短短数年内获得了大量科研工作者的关注。相较于传统合金注重于相图的边界(顶点、边缘)区域,HEAs则侧重于多组元相图靠近中心的区域,因此HEAs有着更加广阔的成分设计空间。与传统金属材料相比,高熵合金还展现出卓越的力学性能和良好的功能特性。当前关于HEAs的报道大都集中在成分设计规则以及材料的微观结构和力学性能方面,并在成分设计和变形机制等方面取得了显著进展,然而关于高熵合金功能性质的开发和理论的研究还十分有限。基于此,本文简要介绍了高熵合金的发展历程,系统总结了高熵合金的制备方法,分析了高熵合金耐蚀性能和耐磨性能的研究现状,并对其影响因素进行了重点讨论,还探讨了高熵合金在软磁、抗辐照、催化剂、生物医用材料等领域的发展现状,最后对高熵合金当前的研究难点和未来发展进行了探讨和展望,以期为研究人员开展功能HEAs的研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜宇航
丁德渝
郭宁
郭胜锋
关键词:  高熵合金  功能性质  耐蚀性  耐磨性  影响机制    
Abstract: For the traditional alloys, most of which were based on a single principal element. They improved the comprehensive properties of the mate-rials always by adding a small or tiny number of specific elements. However, it limited the development of their components and novel pro-perties to a large extent. Therefore, it is high time to develop unconventional alloys to meet the increasing demands. High-entropy alloys (HEAs), a new type of multi-element metals found in recent years, have been gaining increasing popularity among lots of researchers within just these few years because of its unique design concept, organizational structure and excellent properties. Compared with the traditional ones which focused on the boundary (vertex, edge) region of the phase diagram, HEAs attach more importance to the region near the center of the multi-component phase diagram, which is why HEAs have a wider space for the development of composition design. Besides, high-entropy alloys exhibit excellent mechanical properties and good functional properties. Currently, most researches on HEAs focus on the microstructure and mechanical properties of structural materials. According to the composition design and deformation mechanism of HEAs have made great progress. However, the theoretical researches on the functional properties of high-entropy alloys are still very limited. Therefore, this study not only briefly introduces the development of HEAs and systematically summarizes the preparation methods of HEAs, but also discusses the research status of corrosion resis-tance and wear resistance in detail and then summarizes the main factors affecting these properties. In addition, attention has also been paid to the current research status of HEAs as soft magnetic, anti-radiative, catalytic, biomedical materials. Finally, the critical issues of the present research and future development of high-entropy alloys are prospected. The current review would provide the useful reference for scientists who conduct researches on the functional HEAs.
Key words:  high-entropy alloys    functional properties    corrosion resistance    wear resistance    influence mechanism
                    发布日期:  2021-09-26
ZTFLH:  TB31  
基金资助: 国家自然科学基金项目(52071276);重庆市自然科学基金面上项目(cstc2019jcyj-msxmX0059; cstc2020jcyj-msxmX0933);重庆市研究生科研创新项目(CYS20110)
通讯作者:  sfguo@swu.edu.cn   
作者简介:  杜宇航,2019年6月毕业于西华大学,获得工学学士学位。现为西南大学材料与能源学院硕士研究生,在郭胜锋老师的指导下进行研究。目前主要研究领域为难熔高熵合金在高温下的抗氧化行为。
郭胜锋,西南大学材料与能源学院教授、博士研究生导师。2010年在华中科技大学材料科学与工程专业取得工学博士学位。2012.8—2013.1在香港理工大学工业及系统工程学系担任研究助理,2015.9—2016.9在美国密歇根大学核工程与放射科学系进行学术访问。主要研究方向为非晶合金、高熵合金、镁合金以及生物可降解金属。作为项目负责人,主持国家自然科学基金、重庆市基础科学与前沿技术研究专项(重点)项目、重庆市自然科学基金等20余项。在Applied Physics Letters,Scripta Materialia, Electrochemistry Communications等著名期刊上发表学术论文70余篇,授权国家发明专利3项,曾获重庆市自然科学二等奖1项。
引用本文:    
杜宇航, 丁德渝, 郭宁, 郭胜锋. 高熵合金功能特性研究进展[J]. 材料导报, 2021, 35(17): 17051-17063.
DU Yuhang, DING Deyu, GUO Ning, GUO Shengfeng. The Progress of High-entropy Alloys with the Functional Properties. Materials Reports, 2021, 35(17): 17051-17063.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030186  或          http://www.mater-rep.com/CN/Y2021/V35/I17/17051
1 Chen Y X, Zhu S, Wang X M, et al.Journal of Materials Engineering, 2017, 45(11), 129(in Chinese).
陈永星, 朱胜, 王晓明, 等. 材料工程, 2020, 45(11), 129.
2 Cantor B, Chang I T H, Knight P, et al. Materials Science and Enginee-ring A-Structural Materials Properties Microstructure and Processing, 2004, 375-377, 213.
3 Yeh J W, Chen S K, Lin S J, et al.Advanced Engineering Materials, 2004, 6(5), 299.
4 Luan H W, Zhao W, Yao K F.Transactions of Materials and Heat Treatment, 2020, 41(1),1(in Chinese).
栾亨伟, 赵威, 姚可夫. 材料热处理学报, 2020, 41(1), 1.
5 Miracle D B, Senkov O N. Acta Materialia, 2017, 122, 448.
6 Hung S B, Wang C J, Chen Y Y, et al.Surface & Coatings Technology, 2019, 375, 802.
7 Liu X, Lei W, Ma L, et al.Rare Metal Materials and Engineering, 2016, 45(9), 2201.
8 Li P P, Wang A, Liu C T.Journal of Alloys and Compounds, 2017, 694, 55.
9 Kulkarni R, Murty B S, Srinivas V.Journal of Alloys and Compounds, 2018, 746, 194.
10 Kumar N A P K, Li C, Leonard K J, et al. Acta Materialia, 2016, 113, 230.
11 Zhang W, Wang M, Wang L, et al. Applied Surface Science, 2019, 485, 108.
12 Batchelor T A A, Pedersen J K, Winther S H, et al. Joule, 2019, 3(3), 834.
13 Jin Z Y, Lv J, Jia H L, et al.Small, 2019, 15, 1904180.
14 Nagase T, Iijima Y, Matsugaki A, et al. Materials Science & Engineering C, 2020, 107, 110322.
15 Motallebzadeh A, Peighambardoust N S, Sheikh S, et al. Intermetallics, 2019, 133, 106572.
16 Torralba J M, Alvaredo P, Garcia-Junceda A.Powder Metallurgy, 2019, 62(2), 84.
17 Xia S Q, Yang X, Yang T F, et al.Journal of Metals, 2015, 67, 2340.
18 Varalakshmi S, Kamaraj M, Murty B S.Materials Science and Enginee-ring: A, 2010, 527(4), 1207.
19 Ding P P, Mao A Q, Zhang X, et al.Journal of Alloys and Compounds, 2017, 721, 609.
20 Singh M P, Srivastava C.Materials Letters, 2015, 160, 419.
21 Yao Y, Huang Z, Xie P, et al.Science, 2018, 359, 1489.
22 Geng D Y, Park W Y, Kim J C, et al. Journal of Materials Research, 2011, 20(9), 2534.
23 Chen P C, Hedrick J L, Xie Z, et al.Science, 2016, 352, 1565.
24 Moghaddam A O, Samodurova M N, Pashkeev K, et al.Tribology International, 2021, 156, 106857.
25 Dolique V, Thomann A L, Brault P, et al. Surface & Coatings Technology, 2010, 204(12), 1989.
26 Yao C Z, Zhang P, Liu M.Electrochimica Acta, 2008, 53(28), 8359.
27 Liang X B, Guo W, Chen Y X.Materials Science Forum, 2011, 694, 502.
28 Lehtonen J, Koivuluoto H, Ge Y L, et al.Coating, 2020, 10(1), 53.
29 Xu J F, Guo J B, Tian J, et al.Foundry Technology, 2014, 35(11), 2674(in Chinese).
徐锦锋, 郭嘉宝, 田健, 等. 铸造技术, 2014, 35(11), 2674.
30 Li J C, Huang Y X, Meng X C, et al. Advanced Engineering Materials, 2019, 21(8), 1900343.
31 Wang Y P. Microstructure and properties of AlCrFeCoNiCu multi-principal-element alloys and its composite. Ph.D. Thesis, Harbin Institute of Technology, China, 2009(in Chinese).
王艳苹. AlCrFeCoNiCu系多主元合金及其复合材料的组织与性能. 博士学位论文, 哈尔滨工业大学, 2009.
32 Fang S, Chen W, Fu Z. Materials & Design, 2014, 54, 973.
33 Ye Q F, Feng K, Li Z G, et al.Applied Surface Science, 2017, 396, 1420.
34 Tian Y, Lu C Y, Shen Y F, et al.Surfaces and Interfaces, 2019, 15, 135.
35 Luo H, Li Z M, Mingers A M, et al.Corrosion Science, 2018, 134,131.
36 Melia M A, Carroll J D, Whetten S R, et al. Additive Manufacturing, 2019, 29, 100833.
37 Quan F, Xiang H Z, Yang L, et al.The Chinese Journal of Process Engineering, 2019, 19(3), 447(in Chinese).
权峰, 项厚政, 杨磊, 等. 过程工程学报,2019, 19(3), 447.
38 Lee C P, Chen Y Y, Hsu C Y, et al. Journal of the Electrochemical Society, 2007, 154(8), 424.
39 Luo H, Zou S W, Chen Y H, et al.Corrosion Science, 2020, 163, 108287.
40 Lee C P, Chang C C, Chen Y Y, et al. Corrosion Science, 2008, 50 (7), 2053.
41 Shi Y, Yang B, Xie X, et al. Corrosion Science, 2017, 119, 33.
42 Raza A, Abdulahad S, Kang B, et al. Applied Surface Science, 2019, 485, 368.
43 Jiang Y Q, Li J, Juan Y F, et al. Journal of Alloys and Compounds, 2019, 775, 1.
44 Xiang C, Fu H M, Zhang Z M, et al. Journal of Alloys and Compounds, 2020, 818, 153352.
45 Torbati-Sarraf H, Shabani M, Jablonski P D, et al. Materials & Design, 2019, 184, 108170.
46 Zhao R F, Ren B, Cai B, et al.Results in Physics, 2019, 15,102667.
47 Qiu X W, Wu M J, Liu C J, et al.Journal of Alloys and Compounds, 2017, 708, 353.
48 Dai C D, Luo H, Li J, et al. Applied Surface Science, 2020, 499,143903.
49 Wang W R, Wang J Q, Sun Z H, et al.Journal of Alloys and Compounds, 2020, 812, 152139.
50 Tsau C H, Yeh C Y, Tsai M C.Materials, 2019, 12,3716.
51 Li J M, Yang X, Zhu R L, et al.Metals, 2014, 4(4),597.
52 Lin C M, Tsai H L, Bor H Y, et al. Intermetallics, 2010, 18(6), 1244.
53 Hsu Y J, Chiang W C, Wu J K.Materials Chemistry and Physics, 2015, 92, 112.
54 Zhou P F, Xiao D H, Yuan T C.Acta Metallurgica Sinica-English Letters, 2020, 33(7), 937.
55 Zhao J H, Ji X L, Shan Y P, et al.Materials Science and Technology, 201, 32(12), 1271.
56 Soare V, Mitrica D, Constantin I, et al. Materials Science and Technology, 2015, 31(10), 1194.
57 Peng L Y, Chen Y A, Liu Z J, et al.Applied Surface Science, 2020, 504, 144453.
58 Li M Y, Zhang Q, Han B, et al.Journal of Alloys and Compounds, 2020, 816, 152626.
59 Han Z H, Ren W N, Yang J, et al.Journal of Alloys and Compounds, 2020, 816, 152583.
60 Liu D Z, Zhao J, Li Y, et al.Applied Sciences-Basel, 2020, 10(1), 49.
61 Braica V, Balaceanua M, Braic M, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 10, 197.
62 Sha M H, Jia C T, Qiao J, et al.Metals, 2019, 9, 1243.
63 Erdogan A, Gok M S, Zeytin S.Friction, 2020, 8(1), 198.
64 Qiu X W, Zhang Y P, Liu C G. Journal of Alloys and Compounds, 2014, 585, 282.
65 Chuang M H, Tsai M H, Wang W R, et al.Acta Materialia, 2011, 59, 6308.
66 Kumar S,Patnaik A, Pradhan A K, et al. Metallography, Microstructure, and Analysis, 2019, 8(4), 545.
67 Cai Y C, Chen Y, Luo Z, et al. Materials & Design, 2017, 133, 91.
68 Verma A, Tarate P, Abhyankar A C, et al. Scripta Materialia, 2019, 161, 28.
69 Fang Q H, Chen Y, Li J, et al.Physica B-Condensed Matter, 2018, 550, 112.
70 Shi X J, Wang C M, Huang M T.Materials Research Express, 2019, 6 (10), 106537.
71 Kumar A, Swarnakar A K, Basu A, et al. Journal of Alloys and Compounds, 2018,748, 889.
72 Kong D, Guo J, Liu R W, et al.Intermetallics, 2019, 114, 106560.
73 Chen M, Lan L W, Shi X H, et al.Journal of Alloys and Compounds, 2019, 777, 180.
74 Sha M H, Zhang L, Zhang J W, et al.Rare Metal Materials and Engineering, 2017, 46(5), 1237.
75 Cai Z B, Cui X F, Liu Z, et al.Optics and Laser Technology, 2018, 99, 276.
76 Du L M, Lan L W, Zhu S, et al.Journal of Materials Science & Technology, 2019, 35, 917.
77 Joseph J, Haghdadi N, Hodgson K, et al.Wear, 2019, 428, 32.
78 Li X F, Feng Y H, Liu B, et al.Journal of Alloys and Compounds, 2019, 788, 485.
79 Zhou R, Chen G, Liu B, et al.International Journal of Refractory Metals & Hard Materials, 2018, 75, 56.
80 Guo Y J, Li C J, Zeng M, et al.Materials Chemistry and Physics, 2020, 242, 122522.
81 Yu Y, Wang J, Li J S, et al.Journal of Materials Science & Technology, 2016, 32, 470.
82 Wang Y X, Yang Y J, Yang H J, et al.Journal of Alloys and Compounds, 2017, 725, 365.
83 Duan H T, Wu Y, Hua M, et al. Wear, 2013, 297, 1045.
84 Lucas M, Mauger L, Munoz J, et al. Journal of Applied Physics, 2011, 109(7), 07E307.
85 Nayak A K, Suresh K G, Nigam A K, et al. Journal of Applied Physics, 2019, 106, 053901.
86 Sarlar K, Tekgül A, Kucuk I. Current Applied Physics, 2020, 20, 18.
87 Zhang Y, Zuo T T, Cheng Y Q, et al.Scientific Reports, 2013, 3, 1455.
88 Kao Y F, Chen S K, Chen T J, et al. Journal of Alloys and Compounds, 2011, 509(5), 1607.
89 Zuo T T, Gao M C, Ouyang L Z, et al. Acta Materialia, 2017,10,130.
90 Mishra R K, Shahi R R. Journal of Magnetism and Magnetic Materials, 2017, 442, 218.
91 Yu P F, Zhang L J, Cheng H, et al. Intermetallics, 2016, 82, 70.
92 Zuo T T, Li R B, Ren X J, et al.Journal of Magnetism and Magnetic Materials, 2014, 371, 60.
93 Zhang Q, Xu H, Tan X H, et al.Journal of Alloys and Compounds, 2017, 693, 1061.
94 Ma S G, Zhang Y.Materials Science and Engineering: A, 2012, 532, 480.
95 Wang X J, Qiao J W, Wu Y C.Materials Reports A: Review Papers, 2020, 34(9), 17058(in Chinese).
王雪姣, 乔珺威, 吴玉程. 材料导报: 综述篇, 2020, 34(9), 17058.
96 Yang L X, Ge H L, Zhang J, et al.Journal of Materials Science & Technology, 2019, 35, 300.
97 Lu Y P, Huang H F, Gao X Z, et al.Journal of Materials Science & Technology, 2019, 35, 369.
98 Zhang Y W, Tunes M A, Crespillo M L, et al. Nanotechnology, 2019, 30, 294004.
99 Xia S Q, Yang X, Yang T F, et al.JOM, 2015, 67(10), 2340.
100 El-Atwani O, Li N, Li M.Science Advances, 2019, 5(3), eaav2002.
101 Moschetti M, Xu A, Schuh B, et al. JOM, 2020, 72(1), 130.
102 Dhinisa P, Mark D R, Bethany J, et al.Journal of Nuclear Materials,
2020, 531, 152005.
103 Dahl S,Logadottir A, Egeberg R C, et al. Physical Review Letters, 1999, 83(9), 1814.
104 Le Bacq O, Pasturel A, Chattot R, et al. ChemCatChem, 2017, 9(12), 2324.
105 Zhang G L, Ming K S, Kang J L, et al.Electrochimica Acta, 2018, 279, 19.
106 Loeffler T, Meyer H, Savan A, et al. Advanced Energy Materials, 2018, 8(34), 1802269.
107 Yusenko K V, Riva S, Carvalho P A, et al. Scripta Materialia, 2017, 138, 22.
108 Yuan Y, Wu Y, Yang Z, et al.Materials Research Letters, 2019, 7(6), 225.
109 Wang S P, Xu J.Materials Science & Engineering C, 2017, 73, 80.
110 Kozelj P, Vrtnik S, Jelen A, et al. Physical Review Letters, 2014, 113(10), 107001.
111 Marik S, Motla K, Varghese M, et al. Physical Review Letters, 2019, 3(6), 060602.
112 Sahlberg M, Karlsson D, Zlotea C, et al. Scientific Reports, 2016, 6, 36770.
113 Sheikh S, Shafeie S, Hu Q, et al. Journal of Applied Physiology, 2016, 120, 164902.
114 Fan Z, Wang H, Wu Y,et al. Materials Research Letters, 2017, 5(3), 187.
115 Shen L H, Yang X F.Materials Reports A: Review Papers, 2020, 34(6), 11171(in Chinese).
沈利华, 杨晓芳. 材料导报:综述篇, 2020, 34(6), 11171.
116 Jia Y F, Wang G, Jia Y D, et al.Materials Reports A: Review Papers, 2020, 34(9), 17003(in Chinese).
贾岳飞, 王刚, 贾延东, 等. 材料导报:综述篇, 2020, 34(9), 17003.
117 Li T X, Lu Y P, Cao Z Q, et al.Acta Metallurgica Sinica, 2021, 57(1), 42(in Chinese).
李天昕, 卢一平, 曹志强, 等. 金属学报, 2021, 57(1), 42.
[1] 张猛, 花福安, 赵巍. 基于机器学习的高熵合金生成相预测研究[J]. 材料导报, 2021, 35(Z1): 331-335.
[2] 梅金娜, 薛飞, 吴天栋, 卫娜, 蔡振. FeCrNiMn高熵合金本构方程的建立[J]. 材料导报, 2021, 35(Z1): 336-341.
[3] 田浩亮, 张晓敏, 金国, 朴钟宇, 王长亮, 郭孟秋, 杜修忻, 王天颖, 张昂, 肖晨兵. 电火花沉积高熵合金涂层的研究现状与展望[J]. 材料导报, 2021, 35(Z1): 342-346.
[4] 于坤, 祁文军, 李志勤. TA15表面激光熔覆镍基和钴基涂层组织和性能对比研究[J]. 材料导报, 2021, 35(6): 6135-6139.
[5] 王睿鑫, 唐宇, 李顺, 白书欣. 高熵合金动态载荷下变形机制的研究进展[J]. 材料导报, 2021, 35(17): 17001-17009.
[6] 李洪超, 王军, 袁睿豪, 王毅, 寇宏超, 李金山. AlCoCrFeNi系高熵合金的强化方法研究[J]. 材料导报, 2021, 35(17): 17010-17018.
[7] 张国家, 李忍, 刘德华, 卢一平, 王同敏, 李廷举. C对CoFe2NiV0.5Mo0.2高熵合金结构和力学性能的影响[J]. 材料导报, 2021, 35(17): 17026-17030.
[8] 吴正刚, 李熙, 李忠涛. 高熵合金应用于异种金属焊接的研究现状及发展趋势[J]. 材料导报, 2021, 35(17): 17031-17036.
[9] 王伟彤, 陈淑英, 张勇, 赵永好. 高熵合金强韧化方法及力学性能的研究进展[J]. 材料导报, 2021, 35(17): 17043-17050.
[10] 陈刚, 罗涛, 沈书成, 陶韬, 唐啸天, 薛伟. 难熔高熵合金的研究进展[J]. 材料导报, 2021, 35(17): 17064-17080.
[11] 文成, 莫湾湾, 田玉琬, 王贵, 胡杰珍. 高熵合金固溶强化问题的研究进展[J]. 材料导报, 2021, 35(17): 17081-17089.
[12] 夏铭, 孙博, 王鑫, 梁秀兵, 沈宝龙. 高熵合金增材制造研究现状与展望[J]. 材料导报, 2021, 35(13): 13119-13127.
[13] 曹苗, 谢发勤, 吴向清, 王少青, 鲁闯, 姚小飞. 无铬锌铝涂层的研究进展[J]. 材料导报, 2021, 35(13): 13128-13138.
[14] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[15] 曾尚武, 郭夏溦, 张磊, 屈帅, 常建伟, 王舒然, 徐德录, 李雅泊. 铁塔用VCI双金属涂层的制备及性能研究[J]. 材料导报, 2020, 34(Z2): 423-428.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed