Please wait a minute...
材料导报  2021, Vol. 35 Issue (13): 13119-13127    https://doi.org/10.11896/cldb.20030155
  金属与金属基复合材料 |
高熵合金增材制造研究现状与展望
夏铭1,2, 孙博2,3, 王鑫2, 梁秀兵2,*, 沈宝龙3,4,*
1 中国矿业大学化工学院,徐州 221116
2 军事科学院国防科技创新研究院, 北京 100071
3 东南大学材料科学与工程学院 ,南京 211189
4 中国矿业大学材料与物理学院, 徐州 221116
Research Progress and Prospects of High-entropy Alloys Made by Additive Manufacturing
XIA Ming1,2, SUN Bo2,3, WANG Xin2, LIANG Xiubing2,*, SHEN Baolong3,4*
1 School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
2 National Innovation Institute of Defense Technology, Academy of Military Science PLA China, Beijing 100071, China
3 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
4 School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, China
下载:  全 文 ( PDF ) ( 9206KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高熵合金是一种新型合金,与传统合金以一种或两种元素为主添加其他元素为辅的设计不同,高熵合金由等原子比或者近等原子比的多种元素组成。高熵合金拥有许多优异的性能,如高强度,高硬度,热稳定性、耐辐照性和耐蚀性,其潜在的工程应用价值引起了人们的广泛关注。目前,电弧熔炼、机械合金化和粉末冶金法是制备高熵合金最主要的方法,但其冷却速率不高,很难制备出具有简单固溶体结构的高熵合金。此外,合金体系一般含有较多价格昂贵的金属元素,电弧熔炼制备块体合金存在成本较高的问题,而机械合金化和粉末冶金法在制备过程中易使合金成分受到污染,这些问题都会限制高熵合金的应用与发展。而先进的增材制造技术(Additive manufacturing,AM)能够有效解决上述问题。如制备过程中无需模具就可以制备出形状复杂的工件;极快的冷却速度,可以得到超细的组织,同时也可以改善元素分布的均匀性,进而提高工件的综合力学性能。因此,高熵合金增材制造在晶粒细化及构件形状复杂度方面拥有不可比拟的优势。本文综述了增材制造高熵合金的研究现状,归纳了增材制造高熵合金的组织结构与性能特点,总结了高熵合金增材制造过程中的缺陷控制与处理工艺,并展望了增材制造高熵合金的进一步发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
夏铭
孙博
王鑫
梁秀兵
沈宝龙
关键词:  高熵合金  增材制造  组织结构  缺陷控制    
Abstract: As a new type of alloys, high-entropy alloys (HEAs) are composed of multiple principal elements with equiatomic or near-equiatomic ratio, which is different from the traditional alloys that are added with one or two elements as the principal constituent and supplemented with other elements. These materials have attracted worldwide attention for their outstanding potential value in engineering applications, such as high strength and hardness, thermal stability, irradiation resistance and excellent corrosion resistance. Currently, arc melting, mechanical alloying and powder metallurgy are the most important methods to prepare HEAs. However, as a result of low cooling rate, it is difficult to fabricate HEAs with simple solid solution structures, and high cost and contaminants of those preparation processes limit the potential applications and developments of HEAs. Additive manufacturing (AM) technology can solve these problems effectively, such as complex shape can be prepared without mould. Besides, the fast cooling speed is benefit for obtaining ultra-fine and homogenous structure which can improve the mechanical properties. Thus the additive manufacturing is advanced in high entropy alloys for the grain refinement and shape complexity. Therefore, this paper reviews current research status of HEAs made by additive manufacturing and summarizes the microstructure and perfor-mance characteristics of additive-manufactured HEAs. Furthermore, the defect control and post-treatment technology in the additive manufacturing process of HEAs are discussed in detail, and the development trend of additive-manufactured HEAs is also proposed.
Key words:  high-entropy alloys    additive manufacturing    microstructure properties    defect control
               出版日期:  2021-07-10      发布日期:  2021-07-14
ZTFLH:  TG146.4+1  
基金资助: 国家重点研发计划项目资助(2018YFC1902400);国家自然科学基金项目资助(51975582)
作者简介:  夏铭,现为中国矿业大学化工学院博士研究生,在沈宝龙教授与梁秀兵研究员的指导下进行研究。目前主要从事高熵材料体系设计与性能研究。
梁秀兵,军事科学院国防科技创新研究院前沿交叉技术研究中心主任,研究员、博士研究生导师。从事极端环境新型防护材料研究工作,承担了国家重点研发计划、国家863计划、国家自然科学基金、军队科研等多项重点项目。荣获国家科技进步二等奖2项、国家自然科学二等奖1项;专利授权38项;出版著作4部;发表论文200余篇。荣获中国科协求是奖、中国青年科技奖,入选教育部新世纪优秀人才支持计划、国家百千万人才工程,被遴选为2019首都科技盛典十大科技人物,并被授予有突出贡献中青年专家称号,获国务院特殊津贴。
沈宝龙,工学博士,二级教授,博士研究生导师,国家杰出青年科学基金获得者。现任中国矿业大学材料与物理学院院长,东南大学材料科学与工程学院学术委员会主任。承担国家863计划、国家自然科学基金(杰青、面上、重点)、中科院项目、军委科技委项目等多个重要科研项目。在Nature Mater., Advanced Mater., Acta Mater.,等刊物发表学术论文260余篇,被引6 100余次,申请中国发明专利35项。相继入选中科院“百人计划”、浙江省“千人计划”、南京市“321人才计划”(重点)、江苏省“六大人才高峰”、江苏省“双创计划”、及国家“千人计划”等人才计划。
引用本文:    
夏铭, 孙博, 王鑫, 梁秀兵, 沈宝龙. 高熵合金增材制造研究现状与展望[J]. 材料导报, 2021, 35(13): 13119-13127.
XIA Ming, SUN Bo, WANG Xin, LIANG Xiubing, SHEN Baolong. Research Progress and Prospects of High-entropy Alloys Made by Additive Manufacturing. Materials Reports, 2021, 35(13): 13119-13127.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030155  或          http://www.mater-rep.com/CN/Y2021/V35/I13/13119
1 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineerning Materials,2004,6(5),299.
2 Wang Z, Wang X, Yue H, et al. Materials Science and Engineering A,2015,627,391.
3 Zhou Y J, Zhang Y, Wang Y L, et al. Applied Physics Letters,2007,90,181904.
4 Lin C M, Tsai H L. Intermetallics,2011,19(3),288.
5 Zhang Y, Chen M B, Yang X, et al. Advanced technology in high-entropy alloys, Chemical Industry Press, China,2019(in Chinese).
张勇,陈明彪,杨潇,等.先进高熵合金技术,化学工业出版社,2019.
6 Yeh J W. Annales De Chimie Science Materiaux,2006,31(6),633.
7 Senkov O N, Semiatin S L. Journal of Alloys and Compounds,2015,649,1110.
8 Stepanov N D, Yurchenko N Y, Panina E S, et al. Materials Letters,2017,188,162.
9 Senkov O N, Wilks G B, Mirade D B, et al. Intermetallics,2010,18(9),1758.
10 Liang X Y, Yao Y H, Lv Y K. Journal of Xi’an Technology University,2019,39(1),59(in Chinese).
梁霄羽,要玉宏,吕煜坤.西安工业大学学报,2019,39(1),59.
11 11 Zhao Y F, Zhang J Y, Wang Y Q, et al. Science China Materials,2020,63,444.
12 12 Abe F, Osakada K, Shiomi M, et al. Journal of Materials Processing Technology,2001,111(1-3),210.
13 Zaeem M A, Clarke A J. JOM,2016,68,928.
14 Li H X, Gong S L, Sun F, et al. Aeronautical Manufacturing Technology,2012(20),26(in Chinese).
李怀学,巩水利,孙帆,等.航空制造技术,2012(20),26.
15 Frazier W E. Journal of Materials Engineering and Performance,2014,23,1917.
16 Zhai Y, Lados D A, Goy J L. JOM,2014,66(5),808.
17 Niu P D, Li R D, Yuan T C, et al. Journal of Netshape Forming Engineering,2019,11(4),51(in Chinese).
牛朋达,李瑞迪,袁铁锤,等.精密成形工程,2019,11(4),51.
18 Li Q Y, Zhang H, Li D C, et al. Journal of Mechanical Engineering,2019,55(15),11(in Chinese).
李青宇,张航,李涤尘,等.机械工程学报,2019,55(15),11.
19 Senkov O N, Wilks G B, Scott J M, et al. Intermetallics,2011,19(5),698.
20 Lu B H. China Mechanical Engineering,2020,31(1),19(in Chinese).
卢秉恒.中国机械工程,2020,31(1),19.
21 Wang Y, Guo Y X, Wang Z, et al. Rare Metals and Cemented Carbi des,2018,46(2),68(in Chinese).
王茵,郭亚雄,汪震,等.稀有金属与硬质合金,2018,46(2),68.
22 Miracle D B, Senkov O N. Acta Materials,2017,122,448.
23 Zhou F, Liu Q B, Zheng B. High Power Laser Particle Beams,2015,27(11),1190001(in Chinese).
周芳,刘其斌,郑波.强激光与粒子束,2015,27(11),1190001.
24 Dong S Z, Meng X, Ma Z, et al. Transactions of the China Welding Institution,2019,40(7),127(in Chinese).
董世知,孟旭,马壮,等.焊接学报,2019,40(7),127.
25 Feng Y H, Li X F, Liu B, et al. Hot Working Technology,2019,48(8),160(in Chinese).
冯英豪,李晓峰,刘斌,等.热加工工艺,2019,48(8),160.
26 Li B, Zhang L, Xu Y, et al. Powder Technology,2020,360,509.
27 Wang Y F, Yan H, Li J, et al. Surface Technology,2019,48(6),144(in Chinese).
王彦芳,闫晗,李娟,等.表面技术,2019,48(6),144.
28 Kunce I, Polanski M, Bystzycki J. International Journal of Hydrogen Energy,2014,39(18),9904.
29 Wang Y D, Zhang X R, Cui X F, et al. Surface Technology,2019,48(6),118(in Chinese).
王一丹,张学润,崔秀芳,等.表面技术,2019,48(6),118.
30 Wang Y, Shang X J, Tian X Q, et al. Rare Metals and Cemented Carbides,2018(5),30(in Chinese).
王茵,尚晓娟,田兴强,等.稀有金属与硬质合金,2018(5),30.
31 Chen Y X, Zhu S, Wang X M, et al. Hot Working Technology,2018,47(22),160(in Chinese).
陈永星,朱胜,王晓明,等.热加工工艺,2018,47(22),160.
32 Li T Z, Zhang L, Chen Z S, et al. Journal of University of Science Technology Liaoning,2015,38(3),170(in Chinese).
李泰增,张丽,陈子尚,等.辽宁科技大学学报,2015,38(3),170.
33 Huang B, Zhang C, Cheng H, et al. China Surface Engineering,2014,27(6),82(in Chinese).
黄标,张冲,程虎,等.中国表面工程,2014,27(6),82.
34 Peng Z, Du W D, Liu N, et al. Journal of Jiangsu University of Science and Technology (Natural Science Edition),2017,31(1),35.
35 Yao H, Tan Z, He D Y, et al. Journal of Alloys and Compounds,2020,813,152196.
36 Hiroshi S, Tadashi F, Kenta Y, et al. Materials Science and Engineering A,2016,656,39.
37 Zhang C, Wu B Q, Wang Q T, et al. Rare Metal Materials and Enginee-ring,2017,46(9),2639(in Chinese).
张冲,吴炳乾,王乾廷,等.稀有金属材料与工程,2017,46(9),2639.
38 38 Li D L, Zhou F, Yu S H. High Power Laser Particle Beams,2016,28(2),0290001(in Chinese).
李栋梁,周芳,余师豪.强激光与粒子束,2016,28(2),0290001
39 Zheng B J, Wei J Y, Jiang Y H, et al. Laser Technology,2016,40(3),432(in Chinese).
郑必举,魏金宇,蒋业华,等.激光技术,2016,40(3),432.
40 Luo S C, Gao P, Yu H C, et al. Journal of Alloys and Compounds,2019,771,387.
41 Christian H, Florian T, Markus B, et al. Materials Science and Enginee-ring A,2017,688,180.
42 Li B, Qian B, Xu Y, et al. Materials Letters,2019,252,88.
43 Qiu X W, Zhang Y P, Liu C G. Materials Science and Engineering of Powder Metallurgy,2013,18(5),735(in Chinese).
邱星武,张云鹏,刘春阁.粉末冶金材料科学与工程,2013,18(5),735.
44 Guo Y X, Liu Q B, Zhou F. Chinese Journal of Rare Metals,2017,41(12),1327(in Chinese).
郭亚雄,刘其斌,周芳.稀有金属,2017,41(12),1327.
45 Zhou R, Liu Y, Liu B, et al. Intermetallics,2019,106,20.
46 Li Q Y, Li D C, Zhang H, et al. Aeronautical Manufacturing Technology,2018,61(10),61(in Chinese).
李青宇,李涤尘,张航,等.航空制造技术,2018,61(10),61.
47 Shi H, Zheng B J. Materials Protection,2017,50(8),5(in Chinese).
石海,郑必举.材料保护,2017,50(8),5.
48 Li Y Z, Shi Y. Optics and Precision Engineering,2019,27(4),795(in Chinese).
李彦洲,石岩.光学精密工程,2019,27(4),795.
49 Huo W Y, Shi H F, Zhang J Y. Materials for Mechanical Engineering,2014,38(8),61(in Chinese).
霍文燚,时海芳,张竞元.机械工程材料,2014,38(8),61.
50 Tseng K K, Juan C C, Tso S, et al. Entropy,2019,21(1),15.
51 5Cao Z F, Qi H B, Gao X, et al. Applied Laser,2018,38(6),367(in Chinese).
曹振飞,齐海波,高珣,等.应用激光,2018,38(6),367.
52 Li J F, Xiang S, Luan H W, et al. Journal of Materials Science and Technology,2019,35,2430.
53 Karunakaran K P, Suryakumar S, Pushp V, et al. Robotics and Compu-ter-Integrated Manufacturing,2010,26(5),490.
54 Seabra M, Azevedo J, Arajo A, et al. Procedia Structural Integrity,2016(1),289.
55 Xu Y Y, Sun K, Zou Z Q, et al. Journal of Xi’an Jiaotong University,2018,52(1),151.
徐勇勇,孙琨,邹增琪,等.西安交通大学学报,2018,52(1),151.
56 Xiang S, Li J F, Luan H W, et al. Materials Science and Engineering A,2019,743,412.
57 Wang H L, Guo Y X, Lan H W, et al. Surface Technology,2019,48(6),130(in Chinese).
王慧琳,郭亚雄,蓝宏伟,等.表面技术,2019,48(6),130.
58 Oiu X W. Infrared and Laser Engineering,2019,48(7),0712004.
59 Cui W Y, Zhang X C, Li L, et al. Procedia Manufacturing,2019,39,509.
60 Zheng B J, Jiang Y H, Hu W, et al. Journal of Function Materials,2016,47(6),06167(in Chinese).
郑必举,蒋业华,胡文,等.功能材料,2016,47(6),06167.
61 Yeh J W. JOM,2013,65,1759.
62 Yeh J W, Chang S Y, Hong Y D, et al. Materials Chemistry and Physics,2007,103,41.
63 Liu L, Wang C M, Sun H F, et al. Journal of Shandong University Science Technology (Nature Science),2019,37(2),74(in Chinese).
刘亮,王灿明,孙宏飞,等.山东科技大学学报(自然科学版),2019,37(2),74.
64 Guo N N, Wang L, Luo L S, et al. Intermetallics,2016,69,74.
65 Liu Z Q, Qiao J W. Materials China,2019,38(8),767.
刘张全,乔珺威.中国材料进展,2019,38(8),767.
66 Luo S C, Zhao C Y, Su Y, et al. Additive Manufacturing,2020,31,100925.
67 Zhang Y, Zuo T T, Tang Z, et al. Progress in Materials Science,2014,61,1.
68 Xiang S, Zhang L, Liu X, et al. Transaction of Materials and Heat Treatment,2018,39(10),29(in Chinese).
向硕,张雷,刘学,等.材料热处理学报,2018,39(10),29.
69 Sun S J, Tian Y Z, Lin H R, et al. Materials Science and Engineering A,2018,712(1),603.
70 Sui Y W, Chen X, Qi J Q, et al. Journal of Function Materials,2016,47(5),50(in Chinese).
隋艳伟,陈霄,戚继球,等.功能材料,2016,47(5),50.
71 Li Y Z, Shi Y. Chinese Optics,2019,12(2),345(in Chinese).
李彦洲,石岩.中国光学,2019,12(2),345.
72 Niu X L, Jellinek J, Zhou D, et al. Rare Metal Materials and Enginee-ring,2017,46(12),3621.
73 Kosuke K, Hiroshi S, Tadashi F, et al. Additive Manufacturing,2018,23,264.
74 Malatji N, Popoola A P I, Lengopeng T, et al. Materials Today, Procee-dings,2020,28,944.
75 Xiang S, Li J F, Luan H W, et al. Materials Science and Engineering, A,2019,743,412.
76 Yang X M, An Z B, Chen Y H. Materials Reports B: Research Papers,2019,33(11),348(in Chinese).
杨晓萌,安子冰,陈艳辉.材料导报:研究篇,2019,33(11),348.
77 Chang F, Cai B J, Zhang C, et al. Surface and Coatings Technology,2019,35,132.
78 Mohanty A, Sampreeth J K, Bembalge O, et al. Surface and Coatings Technology,2019,380,125028.
79 Huang C, Zhang Y Z, Shen J Y, et al. Surface and Coatings Technology,2011,206,1389.
80 Joseph J, Hodgson P, Jarvis T, et al. Materials Science and Engineering A,2018,733,59.
81 Guo J, Goh M H, Zhu Z G, et al. Materials and Design,2018,153,211.
82 Wang P, Huang P F, Ng F L, et al. Materials and Design,2019,168,107576.
83 Sistla H R, Newkirk J W, Liou F F. Materials and Design,2015,81,113.
84 Zhang C, Chen G J, Dai P Q. Heat Treatment of Metals,2015,40(9),146(in Chinese).
张冲,陈国进,戴品强.金属热处理,2015,40(9),146.
85 Liu X Y, Liu Y, Li W, et al. Hot Working Technology,2019,48(8),197(in Chinese).
刘学友,刘英,李卫,等.热加工工艺,2019,48(8),197.
86 Chu Y J, Li X Q, Li J, et al. Transaction of Materials and Heat Treatment,2018,39(6),91(in Chinese).
初雅杰,李晓泉,李建,等.材料热处理学报,2018,39(6),91.
87 Sha M H, Zhang L, Zhang J W, et al. Rare Metal Materials and Engineering,2017,46(5),1237.
[1] 张猛, 花福安, 赵巍. 基于机器学习的高熵合金生成相预测研究[J]. 材料导报, 2021, 35(Z1): 331-335.
[2] 梅金娜, 薛飞, 吴天栋, 卫娜, 蔡振. FeCrNiMn高熵合金本构方程的建立[J]. 材料导报, 2021, 35(Z1): 336-341.
[3] 田浩亮, 张晓敏, 金国, 朴钟宇, 王长亮, 郭孟秋, 杜修忻, 王天颖, 张昂, 肖晨兵. 电火花沉积高熵合金涂层的研究现状与展望[J]. 材料导报, 2021, 35(Z1): 342-346.
[4] 杨鑫, 马文君, 王岩, 刘世锋, 张兆洋, 王婉琳, 王犇, 汤慧萍. 增材制造金属点阵多孔材料研究进展[J]. 材料导报, 2021, 35(7): 7114-7120.
[5] 杨杰, 黎静, 吴文杰, 于宁. 空间大型桁架在轨增材制造技术的研究现状与展望[J]. 材料导报, 2021, 35(3): 3159-3167.
[6] 金鑫源, 兰亮, 何博, 朱奥迪, 高双. 选区激光熔化成形金属零件表面粗糙度研究进展[J]. 材料导报, 2021, 35(3): 3168-3175.
[7] 常坤, 梁恩泉, 张韧, 郑敏, 魏雷, 黄文静, 林鑫. 金属材料增材制造及其在民用航空领域的应用研究现状[J]. 材料导报, 2021, 35(3): 3176-3182.
[8] 王凯博, 刘玉欣, 吕耀辉, 徐滨士. 工艺参数对脉冲等离子弧增材制造IN738LC合金组织与性能的影响[J]. 材料导报, 2021, 35(2): 2086-2091.
[9] 栗卓新, 祝静, 李红. 增材制造技术环境影响及其生命周期评价的研究进展[J]. 材料导报, 2021, 35(11): 11173-11179.
[10] 尹桂丽, 陈岁元, 梁京, 刘常升. 激光直接沉积Fe55/NiCr-Cr3C2复合涂层的组织与性能[J]. 材料导报, 2021, 35(10): 10127-10133.
[11] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[12] 伍芷凝, 姚青, 刘国盛, 涂广俊, 周振宇, 丁明伟, 徐辉. 电弧微爆制备球形铜粉技术的工艺特性[J]. 材料导报, 2020, 34(Z2): 386-389.
[13] 李毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020, 34(Z1): 280-282.
[14] 吴韬, 段佳伟, 陈小明, 俞立涛, 陈云祥, 石淑琴. 合金元素对激光熔覆高熵合金涂层影响的研究进展[J]. 材料导报, 2020, 34(Z1): 413-419.
[15] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed