Please wait a minute...
材料导报  2021, Vol. 35 Issue (3): 3168-3175    https://doi.org/10.11896/cldb.19100109
  金属与金属基复合材料 |
选区激光熔化成形金属零件表面粗糙度研究进展
金鑫源, 兰亮, 何博, 朱奥迪, 高双
上海工程技术大学材料工程学院,高温合金精密成型研究中心,上海 201620
A Review on Surface Roughness of Metals Parts Fabricated by Selective Laser Melting
JIN Xinyuan, LAN Liang, HE Bo, ZHU Aodi, GAO Shuang
Research Center of High-temperature Alloy Precision Forming, School of Material Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
下载:  全 文 ( PDF ) ( 6799KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 选区激光熔化(SLM)作为一种新型金属增材制造技术,具有可批量化、高精度、近净成形的特点,尤其适用于制备高性能、复杂精细结构的金属零件,在航空航天和生物医疗等领域具有广泛的应用。然而,目前SLM成形零件的表面质量仍难以直接满足工业应用的需求,优化工艺参数与不同的后处理工艺成为控制成形件表面质量的主要途径。
SLM成形件的后处理工艺主要包括机械加工、表面喷砂、激光抛光、化学抛光、电解抛光、超声波表面改性等。但是,具有特定用途的零件对其表面的耐磨性、缺口敏感性、流体摩擦阻力等提出了更高的要求。因此,选择金属零件的后处理工艺时,需要结合零件的应用背景来选择合适的处理工艺。
本文基于SLM技术原理和特点,概述了影响SLM成形件表面粗糙度的主要因素,归纳了改善成形件表面粗糙度的主要后处理工艺,最后对控制SLM成形件表面粗糙度所面临的挑战和未来的发展趋势进行了展望及总结。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金鑫源
兰亮
何博
朱奥迪
高双
关键词:  选区激光熔化  表面粗糙度  增材制造  后处理    
Abstract: Selective laser melting (SLM) is a new additive manufacturing (AM) technology, which has the advantage of high efficiency, high precision, near-net forming, and can be used to fabricate high performance components with complex geometries. All of these characters make SLM a wide array of application in aerospace and biomedical fields. However, the surface quality of parts manufactured via SLM still cannot meet the needs of industrial applications. The optimization of process parameters and different post-treatment processes are the main ways to control the surface quality of SLM-fabricated parts.
For the post-treatment process of SLM-manufactured parts, it mainly includes conventional machining, surface blasting, laser polishing, chemical polishing, electrolytic polishing, ultrasonic surface modification, etc. Especially for those parts with specific applications, higher requirements are placed on the surface wear resistance, notch sensitivity, and fluid friction resistance. Therefore, it is necessary to select an appropriate post-treatment process based on the characteristics of the SLM-fabricated parts.
Based on the principle of the SLM technology, this paper summarizes the main factors affecting the surface roughness and the main post-treatment processes to improve the surface quality of the SLM-manufactured parts. Finally, the challenges and future development trends of controlling the surface roughness of SLM-manufactured metal parts are prospected and assessed.
Key words:  selective laser melting    surface roughness    additive manufacturing    post-treatment
               出版日期:  2021-02-10      发布日期:  2021-02-19
ZTFLH:  TB31  
基金资助: 上海市2017年度“创新行动计划”基础研究项目(17JC1400600; 17JC1400603)
作者简介:  金鑫源,1995 年生,2017 年毕业于上海工程技术大学,获工学学士学位,现为上海工程技术大学材料学专业硕士,主要研究方向为钛合金增材制造。以第一作者身份在Materials Science and Engineering: A期刊上发表论文1篇。
兰亮,1986年生,2016年毕业于上海大学钢铁冶金专业,获博士学位;现为上海工程技术大学材料工程学院讲师、硕士研究生导师;中国金属学会会员;主要研究方向为钛合金增材制造,激光表面处理;以第一作者或者通讯作者身份在Journal of Materials Science & Technology、Materials Science and Engineering: A、Materials Letters、Ceramic International等期刊上发表论文7篇;担任Materials Letters、Journal of Manufacturing Processes、Journal of Adhesion Science and Technology等期刊审稿人。
引用本文:    
金鑫源, 兰亮, 何博, 朱奥迪, 高双. 选区激光熔化成形金属零件表面粗糙度研究进展[J]. 材料导报, 2021, 35(3): 3168-3175.
JIN Xinyuan, LAN Liang, HE Bo, ZHU Aodi, GAO Shuang. A Review on Surface Roughness of Metals Parts Fabricated by Selective Laser Melting. Materials Reports, 2021, 35(3): 3168-3175.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100109  或          http://www.mater-rep.com/CN/Y2021/V35/I3/3168
1 Thompson S M, Bian L, Shamsaei N, et al.Additive Manufacturing,2015,8,36.2 William E Frazier.Journal of Materials Engineering & Performance,2014,23,1917.3 Levy G N, Schindel R, Kruth J P.CIRP Annals-Manufacturing Technology,2010,52,589.4 Emelogu A, Marufuzzaman M, Thompson S M, et al.Additive Manufacturing,2016,11,97.5 Murr L E, Gaytan S M, Medina F, et al.Philosophical Transactions: Mathematical, Physical and Engineering Sciences,2010,368,1999.6 Harun W S W, Kamariah M S I N, Muhamad N, et al.Powder Technology,2018,327,128.7 Li H L, Jia D C, Yang Z H, et al.Materials Science and Technology,2019,27(2),1(in Chinese).李海亮,贾德昌,杨治华,等.材料科学与工艺,2019,27(2),1.8 Townsend A, Senin N, Blunt L, et al.Precision Engineering,2016,46,34.9 Yadollahi A, Shamsaei N.International Journal of Fatigue,2017,98,14.10 Jin X, Lan L, Gao S, et al.Materials Science and Engineering: A,2020,780,139199.11 Liu R C, Yang Y Q, Wang D.Laser Technology,2013,37(4),425(in Chinese).刘睿诚,杨永强,王迪.激光技术,2013,37(4),425.12 Jason C F, Shawn P M, Brandon M L.Procedia CIRP,2016,45,131.13 Zhu C K, Ding L P.Applied Laser,2017(2),207(in Chinese).朱成凯,丁力平.应用激光,2017(2),207.14 Hu Z H.Study on the melting and solidification behavior of AlCu5MnCdVA alloy fabricated by selective laser melting. Ph.D. Thesis, Huazhong University of Science and Technology, China,2018 (in Chinese).胡志恒. AlCu5MnCdVA铝合金的激光选区熔化成形熔凝行为研究.博士学位论文,华中科技大学,2018.15 Duan S Q.Optimization of laser selective melting process for metal overhanging circular hole structure. Master's Thesis, Nanjing University of Science and Technology, China,2018(in Chinese).段声勤. 金属悬垂圆孔结构激光选区熔化成形工艺优化.硕士学位论文,南京理工大学,2018.16 Cai W J.Research on process and property of 18Ni-300 alloy manufactured by selective laser melting. Master's Thesis, Lanzhou University of Technology, China,2018(in Chinese).蔡伟军. 18Ni-300粉末激光选区熔化成型工艺及成型件性能研究.硕士学位论文,兰州理工大学,2018.17 An C, Zhang Y M, Zhang J S.Applied Laser,2018,38(3),328(in Chinese).安超,张远明,张金松.应用激光,2018,38(3),328.18 Li Z H, Kuai Z Z, Liu B, et al.Journal of Ordnance Equipment Engineering,2019,40(9),165(in Chinese).李忠华,蒯泽宙,刘斌,等.兵器装备工程学报,2019,40(9),165.19 Meiners W, Wissenbach K, Gasser A.DE. patent, DE19649865C1,1998.20 Herzog D, Seyda V, Wycisk E, et al.Acta Materialia,2016,117,371.21 Zhao X H, Zuo Z B, Han Z Y, et al.Materials Review A:Review Papers,2016,30(12),120(in Chinese).赵霄昊,左振博,韩志宇,等.材料导报:综述篇,2016,30(12),120.22 Liu S Y, Shin Y C.Materials & Design,2019,164,107552.23 Lan L, Jin X, Gao S, et al.Journal of Materials Science & Technology,2020,50,153.24 Mumtaz K, Hopkinson N.Rapid Prototyping Journal,2009,15,96.25 Yadroitsev I, Gusarov A, Yadroitsava I, et al.Journal of Materials Processing Technology,2010,210,1624.26 Majeed A, Ahmed A, Salam A, et al.International Journal of Lightweight Materials and Manufacture,2019,2,288.27 Khairallah S A, Anderson A T, Rubenchik A, et al.Acta Materialia,2016,108,36.28 Matthews M J, Guss G, Khairallah S A, et al.Acta Materialia,2016,114,33.29 Karlsson J, Snis A, Engqvist H, et al.Journal of Materials Processing Technology,2013,213,2109.30 Yang T, Liu T T, Liao W H, et al.Journal of Materials Processing Technology,2019,266,26.31 Roehling T T, Wu S S Q, Khairallah S A, et al.Acta Materialia,2017,128,197.32 Nguyen Q B, Luu D N, Nai S M L, et al.Archives of Civil and Mechanical Engineering,2018,18(3),948.33 Qiu C L, Panwisawas C, Ward M, et al.Acta Materialia,2015,96,72.34 Chan K S, Koike M, Mason R L, et al.Metallurgical and Materials Transactions A,2013,44,1010.35 Moussaoui K, Rubio W, Mousseigne M, et al.Materials Science and Engineering: A,2018,735,182.36 Li C, White R, Fang X Y, et al.Materials Science and Engineering: A,2017,705,20.37 Mumtaz K, Hopkinson N.Rapid Prototyping Journal,2010,16,248.38 Strano G, Hao L, Everson R M, et al.Journal of Materials Processing Technology,2013,213,589.39 Chen Z E, Wu X H, Tomus D, et al.Additive Manufacturing,2018,21,91.40 Pegues J, Roach M, Williamson R S, et al.International Journal of Fatigue,2018,116,543.41 Brinksmeier E, Levy G, Meyer D, et al.CIRP Annals,2010,59,601.42 Eyzat Y, Chemkhi M, Portella Q, et al.Procedia CIRP,2019,81,1225.43 Bagehorn S, Wehr J, Maier H J.International Journal of Fatigue,2017,102,135.44 Zhang Y J, Song B, Zhao X.Journal of Mechanical Engineering,2018,54(13),170(in Chinese).章媛洁,宋波,赵晓,等.机械工程学报,2018,54(13),170.45 Wycisk E, Solbach A, Siddique S, et al.Physics Procedia,2014,56,371.46 Aboulkhair N T, Maskery I, Tuck C, et al.Materials & Design,2016,104,174.47 Greitemeir D, Schmidtke K, Holzinger V, et al.In:Conference Record of the 27th ICAF Symposium. Jerusalem,2013,pp.5.48 Heidrich S, Richmann A, Schmitz P, et al.Optics & Lasers in Enginee-ring,2014,59,34.49 Kumstel J, Kirsch B.Physics Procedia,2013,41,362.50 Ma C P, Guan Y C, Zhou W.Optics and Lasers in Engineering,2017,93,171.51 Marimuthu S, Triantaphyllou A, Antar M, et al.International Journal of Machine Tools & Manufacture,2015,95,97.52 Yung K C, Xiao T Y, Choy H S, et al.Journal of Materials Processing Technology,2018,262,53.53 Bhaduri D, Penchev P, Batal A, et al.Applied Surface Science,2017,405,29.54 Wang W J, Yung K C, Choy H S, et al.Applied Surface Science,2018,443,167.55 Balyakin A, Zhuchenko E, Nosova E.Materials Today: Proceedings,2019,19,2307.56 Balyakin A, Goncharov E, Zhuchenko E.Materials Today: Proceedings,2019,19,2291.57 Mohammadian N, Turenne S, Brailovski V.Journal of Materials Proces-sing Technology,2018,252,728.58 GPyka G, Kerckhofs G, Papantoniou I, et al.Materials,2013,6,4737.59 Jung J H, Park H K, Soo Lee B S, et al.Surface and Coatings Technology,2017,324,106.60 Zeidler H, Boettger-Hiller F, Edelmann J, et al.Procedia CIRP,2016,49,83.61 Zhang J, Chaudhari A, Wang H.Journal of Manufacturing Processes,2019,45,710.62 Tan K L, Yeo S H.Wear,2017,378-379,90.63 Zhang H, Zhao J Y, Liu J, et al.Additive Manufacturing,2018,22,60.64 Sterling A J, Torries B, Shamsaei N, et al.Materials Science and Engineering: A,2016,655,100.
[1] 杨杰, 黎静, 吴文杰, 于宁. 空间大型桁架在轨增材制造技术的研究现状与展望[J]. 材料导报, 2021, 35(3): 3159-3167.
[2] 常坤, 梁恩泉, 张韧, 郑敏, 魏雷, 黄文静, 林鑫. 金属材料增材制造及其在民用航空领域的应用研究现状[J]. 材料导报, 2021, 35(3): 3176-3182.
[3] 王凯博, 刘玉欣, 吕耀辉, 徐滨士. 工艺参数对脉冲等离子弧增材制造IN738LC合金组织与性能的影响[J]. 材料导报, 2021, 35(2): 2086-2091.
[4] 宋亢, 坚增运, 王渭中, 陈焱. SLM成形10%SiC颗粒增强铝基复合材料的工艺优化及性能[J]. 材料导报, 2020, 34(Z2): 376-380.
[5] 伍芷凝, 姚青, 刘国盛, 涂广俊, 周振宇, 丁明伟, 徐辉. 电弧微爆制备球形铜粉技术的工艺特性[J]. 材料导报, 2020, 34(Z2): 386-389.
[6] 李毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020, 34(Z1): 280-282.
[7] 张亚娟, 李亚楠, 宋晓艳, 王海滨, 侯超, 聂祚仁. 特殊粒径分布球形Ni粉的制备及SLM工艺性能研究[J]. 材料导报, 2020, 34(6): 6114-6119.
[8] 李卿, 赵国瑞, 马文有, 余红雅, 刘敏. 选区激光熔化成形多孔Ti6Al4V (ELI)合金的拉伸性能及断裂机制[J]. 材料导报, 2020, 34(4): 4073-4076.
[9] 秦翔, 杨军, 邹德宁, 谢燕翔. 选区激光熔化线能量对Inconel718涂层组织结构及性能的影响[J]. 材料导报, 2020, 34(4): 4093-4097.
[10] 丁华平,龚攀,姚可夫,邓磊,金俊松,王新云. 非晶合金零件成形技术研究进展[J]. 材料导报, 2020, 34(3): 3133-3141.
[11] 张金田, 王杏华, 王涛, 马晓蕾, 杨海欧. 电弧增材制造单道单层工艺特性研究[J]. 材料导报, 2020, 34(24): 24132-24137.
[12] 孙雅杰, 常云龙. 磁控电弧焊接过程及新技术研究进展[J]. 材料导报, 2020, 34(21): 21155-21165.
[13] 王文权, 李雅倩, 李欣, 刘亮, 陈飞. 选区激光熔化制备Ni-Cr-B-Si合金粉末的微观组织与性能[J]. 材料导报, 2020, 34(2): 2077-2082.
[14] 马旻昱, 连勇, 张津. 增材制造技术制备高熵合金的研究现状及展望[J]. 材料导报, 2020, 34(17): 17082-17088.
[15] 梁静静, 张相召, 赵光辉, 刘桂武, 邵海成, 乔冠军. 磨削加工对Al2O3陶瓷表面质量与力学性能的影响[J]. 材料导报, 2020, 34(16): 16020-16024.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed