Please wait a minute...
材料导报  2021, Vol. 35 Issue (3): 3176-3182    https://doi.org/10.11896/cldb.19100153
  金属与金属基复合材料 |
金属材料增材制造及其在民用航空领域的应用研究现状
常坤1, 梁恩泉1, 张韧1, 郑敏2,3, 魏雷2,3, 黄文静1, 林鑫2,3
1 中国商用飞机有限责任公司上海飞机设计研究院,上海 201210;
2 西北工业大学凝固技术国家重点实验室,西安 710072;
3 西北工业大学金属高性能增材制造与创新设计工业和信息化部重点实验室,西安 710072
Status of Metal Additive Manufacturing and Its Application Research in the Field of Civil Aviation
CHANG Kun1, LIANG Enquan1, ZHANG Ren1, ZHENG Min2,3, WEI Lei2,3, HUANG Wenjing1, LIN Xin2,3
1 Shanghai Aircraft Design and Research Institute, COMAC, Shanghai 201210, China;
2 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China;
3 Key Laboratory of Metal High Performance Additive Manufacturing and Innovative Design, MIIT China, Northwestern Polytechnical University, Xi'an 710072, China;
下载:  全 文 ( PDF ) ( 6165KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属增材制造技术以逐层快速熔/凝、堆积金属或合金材料为基本原理,以“添加”制造的方式成形任意形状零件,具有成形效率高、材料利用率高、成本低、复杂异形结构和高熔点材料的成形能力强等优点,在民用航空构件的减重、快速构型更改、集成化制造等方面具有传统工艺无法比拟的技术优势。
面向增材制造技术的金属原材料和成形工艺丰富多样,为制备不同尺寸、不同形状、不同使用环境要求的构件提供了更多的选择,为减重、增效、成本控制提供了新的路径。因此,国内外均在积极制订相关重大战略规划以抢占增材制造创新技术先机、推进制造业的转型升级。全球制造商和高校等机构开展了大量增材制造原材料、工艺、性能方面的应用研究,其中以民用航空尖端制造业的应用研究最为典型。与其他领域不同,增材制造金属构件在民机上的装机应用需要经历严格的适航验证程序,形成标准规范技术体系,实现制造过程和产品质量的稳定可控,最终才能装机使用。
本文介绍了金属增材制造的国内外政策概况、原材料与成形工艺分类、无损检测类型、民用飞机的应用研究情况,指出了针对金属增材制造在民用航空领域扩大应用的研究和发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
常坤
梁恩泉
张韧
郑敏
魏雷
黄文静
林鑫
关键词:  民用航空  金属材料  增材制造    
Abstract: The metal additive manufacturing technology, which is based on the primary principle of layer-by-layer rapid melting/consolidation and stacking the metal or alloy materials, can forms any shape components in a manner of “addition” manufacturing. The main advantages of additive manufacturing include high forming efficiency, high material utilization rate, low cost, the ability of manufacturing complex structure and high-melting point material. Moreover, the additive manufacturing has the technical advantages unmatched by traditional processing in the weight reduction, rapid configuration change and the integrate manufacturing of civil aviation components.
The metal raw materials and forming processes for additive manufacturing technology are rich and varied, providing much more choices for manufacturing components with different requirements in sizes, shapes, operating environments and a new path for weight reduction, efficiency improvement and cost control. Therefore, the world countries are actively formulating relevant strategic plans to seize the opportunities of additive manufacturing technologies and promote the transformation and upgrading of manufacturing industry. Global manufacturers, universities and other institutions have carried out a large amount of application researches on raw materials, processing and performances of additive manufacturing, among which the most typical example is the utilization in the cutting-edge manufacturing field of civil aviation. Different from other fields, the application of metal components in civil aircraft requires a strict airworthiness verification procedure to establish the standard specification and technical system, achieving stable and controllable manufacturing process and product quality. Then, the additive manufactured productions are allowed for being installed on airplane.
This paper introduces the domestic and international policy overview, the classification of raw materials and processing, the type of non-destructive testing, the application research status of metal additive manufacturing on civil aircraft, and points out the research and development trend of expanding the application of metal additive manufacturing in civil aviation.
Key words:  civil aviation    metallic materials    additive manufacturing
               出版日期:  2021-02-10      发布日期:  2021-02-19
ZTFLH:  V260.6  
基金资助: 国家重点研发计划“增材制造与激光制造”重点专项课题(2016YFB1100105); 国家自然科学基金(51604227); 中国商用飞机有限责任公司创新课题(Y16GS05-20)
作者简介:  常坤,2017年4月毕业于南京航空航天大学,获得硕士学位。现为中国商用飞机有限责任公司上海飞机设计研究院材料研发工程师,主要从事金属增材制造材料的装机应用与适航评价、民机材料的工艺性研究与评价。
魏雷,副研究员,西北工业大学材料学院。在西北工业大学获得博士学位。研究方向为凝固微观组织数值模拟和激光增材制造过程模拟。
引用本文:    
常坤, 梁恩泉, 张韧, 郑敏, 魏雷, 黄文静, 林鑫. 金属材料增材制造及其在民用航空领域的应用研究现状[J]. 材料导报, 2021, 35(3): 3176-3182.
CHANG Kun, LIANG Enquan, ZHANG Ren, ZHENG Min, WEI Lei, HUANG Wenjing, LIN Xin. Status of Metal Additive Manufacturing and Its Application Research in the Field of Civil Aviation. Materials Reports, 2021, 35(3): 3176-3182.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100153  或          http://www.mater-rep.com/CN/Y2021/V35/I3/3176
1 Beaman J J, Deckard C R.Selective laser sintering with assisted powder handling, US patent,4938816,1990.2 Gibson I, Rosen D W, Stucker B.Additive manufacturing technologies: rapid prototyping to direct digital manufacturing, Springer Science/Business Media, New York,2010.3 Pham D T, Dimov S S.Rapid manufacturing: the technologies and applications of rapid prototyping and rapid tooling, Springer-Verlag, London,2001.4 Shi Y.Machine Design and Manufacturing Engineering,2016,45(2),11(in Chinese).史玉升. 机械设计与制造工程,2016,45(2),11.5 Gu D, Shen Y.Aeronautical Manufacturing Technology,2012(8),32(in Chinese).顾冬冬,沈以赴.航空制造技术,2012(8),32.6 He B, Wu W, Zhang L, et al.Materials Reports,2017,31(S2),465(in Chinese).何贝贝,吴文恒,张亮,等.材料导报,2017,31(专辑30),465.7 Liu Y, Dong L, Wang H.Materials Reports A: Review Papers,2019,33(11),3541(in Chinese).刘颖,董丽虹,王海斗.材料导报:综述篇,2019,33(11),3541.8 Peng Q, Dong S, Yan S, et al.Materials Reports B: Research Papers,2018,32(8),2666(in Chinese).彭谦,董世运,闫世兴,等.材料导报:研究篇,2018,32(8),2666.9 Gu D D, Meiners W, Wissenbach K, et al.International Materials Reviews,2012,57(3),133.10 https://www.energy.gov/sites/prod/files/2013/11/f4/nstc_feb2012.11 Gu D.Science Bulletin,2016,61(22),1718.12 http://www.most.gov.cn/tztg/201304/t20130416_100885.htm.13 Tian Z, Gu D, Shen L, et al.Aeronautical Manufacturing Technology,2015(11),38(in Chinese).田宗军,顾冬冬,沈理达,等.航空制造技术,2015(11),38.14 Deng L, Wang S, Wang P, et al.Materials Letters,2018,212(1),346.15 He B, Wu W, Zhang L, et al.Vacuum,2018,150,79.16 Wu B, Pan Z, Li S, et al.Corrosion Science,2018,137,176.17 Fousova M, Dvorsky D, Michalcova A, et al.Materials Characterization,2018,137,119.18 Bi J, Lei Z, Chen Y, et al.Materials Science & Engineering A,2020,774,138931.19 Chen J, Hou W, Wang X, et al.Chinese Journal of Aeronautics,2020,33(7),2043.20 Scudino S, Unterdorfer C, Prashanth K G, et al.Materials Letters,2015,156,202.21 Wolf T, Fu Z, Korner C.Materials Letters,2019,238,241.22 Muller A V, Schlick G, Neu R, et al.Nuclear Materials and Energy,2019,19,184.23 Marinelli G, Martina F, Ganguly S, et al.International Journal of Refractory Metal & Hard Materials,2019,82,329.24 Bakshi S R, Lahiri D, Afarwal A.International Materials Reviews,2010,55(1),41.25 Attar H, Bonisch M, Calin M, et al.Acta Materialia,2014,76,13.26 Aboulkhair N T, Simonelli M, Salama E, et al.Materials Science & Engineering A,2019,765,138307.27 Gu D, Rao X, Dai D, et al.Additive Manufacturing,2019,29,100801.28 Lin X, Huang W.Science China: Information Sciences,2015,45(9),1111(in Chinese).林鑫,黄卫东.中国科学:信息科学,2015,45(9),1111.29 Yang Q, Lu Z, Huang F, et al.Aeronautical Manufacturing Technology,2016(12),26(in Chinese).杨强,鲁中良,黄福享,等.航空制造技术,2016(12),26.
[1] 杨杰, 黎静, 吴文杰, 于宁. 空间大型桁架在轨增材制造技术的研究现状与展望[J]. 材料导报, 2021, 35(3): 3159-3167.
[2] 金鑫源, 兰亮, 何博, 朱奥迪, 高双. 选区激光熔化成形金属零件表面粗糙度研究进展[J]. 材料导报, 2021, 35(3): 3168-3175.
[3] 王凯博, 刘玉欣, 吕耀辉, 徐滨士. 工艺参数对脉冲等离子弧增材制造IN738LC合金组织与性能的影响[J]. 材料导报, 2021, 35(2): 2086-2091.
[4] 范燕, 徐昕荣, 石志峰, 刘佳, 李冰, 徐蒙蒙. 生物医用金属材料表面改性的研究进展[J]. 材料导报, 2020, 34(Z2): 327-329.
[5] 伍芷凝, 姚青, 刘国盛, 涂广俊, 周振宇, 丁明伟, 徐辉. 电弧微爆制备球形铜粉技术的工艺特性[J]. 材料导报, 2020, 34(Z2): 386-389.
[6] 李毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020, 34(Z1): 280-282.
[7] 李卿, 赵国瑞, 马文有, 余红雅, 刘敏. 选区激光熔化成形多孔Ti6Al4V (ELI)合金的拉伸性能及断裂机制[J]. 材料导报, 2020, 34(4): 4073-4076.
[8] 丁华平,龚攀,姚可夫,邓磊,金俊松,王新云. 非晶合金零件成形技术研究进展[J]. 材料导报, 2020, 34(3): 3133-3141.
[9] 张金田, 王杏华, 王涛, 马晓蕾, 杨海欧. 电弧增材制造单道单层工艺特性研究[J]. 材料导报, 2020, 34(24): 24132-24137.
[10] 孙雅杰, 常云龙. 磁控电弧焊接过程及新技术研究进展[J]. 材料导报, 2020, 34(21): 21155-21165.
[11] 牛犇, 王镇华, 潘钱付, 刘超红, 王清, 董闯. 核电用铁素体/马氏体耐热钢的性能与成分研究进展[J]. 材料导报, 2020, 34(19): 19141-19151.
[12] 马旻昱, 连勇, 张津. 增材制造技术制备高熵合金的研究现状及展望[J]. 材料导报, 2020, 34(17): 17082-17088.
[13] 刘广, 周溯源, 杨海威, 陈鹏, 欧阳潇, 严明. 3D打印CoCrFeMnNi高熵合金的微观组织、室温及低温力学性能[J]. 材料导报, 2020, 34(11): 11076-11080.
[14] 邹田春, 欧尧, 祝贺, 秦嘉徐. 激光选区熔化AlSi7Mg合金的微观组织和力学性能[J]. 材料导报, 2020, 34(10): 10098-10102.
[15] 崔铮. 柔性混合电子——基于印刷加工实现柔性电子制造[J]. 材料导报, 2020, 34(1): 1009-1013.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed