Please wait a minute...
材料导报  2020, Vol. 34 Issue (19): 19141-19151    https://doi.org/10.11896/cldb.19070056
  金属与金属基复合材料 |
核电用铁素体/马氏体耐热钢的性能与成分研究进展
牛犇1, 王镇华1, 潘钱付2, 刘超红2, 王清1,, 董闯1
1 大连理工大学三束材料改性教育部重点实验室&材料科学与工程学院,大连 116024
2 中国核动力研究设计院反应堆燃料及材料重点实验室,成都 610213
Research Progress on Properties and Composition of Ferritic/Martensitic
Heat-resistant Steels for Nuclear Power
NIU Ben1, WANG Zhenhua1, PAN Qianfu2, LIU Chaohong2, WANG Qing1, DONG Chuang1
1 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education) & School of Material Science and Engineering, Dalian University of Technology, Dalian 116024, China
2 Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610213, China
下载:  全 文 ( PDF ) ( 6731KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,随着核电系统的不断发展,作为第四代核反应堆体系主要堆型的铅冷快中子反应堆(LFR)因其良好的导热性和中子经济性而成为目前研究的热点。为了优化铅铋冷却剂中包壳材料的腐蚀和辐照性能,作为火力发电重要高温结构材料的9%~12% Cr铁素体/马氏体钢(F/M)因良好的抗腐蚀性和耐辐照肿胀性能而成为铅冷快中子反应堆的候选包壳材料。
然而,铁素体/马氏体耐热钢作为候选包壳材料,在服役过程中由于承受核燃料裂变带来的高温和辐照会加剧材料的腐蚀,同时辐照会进一步加剧材料的高温组织不稳定性,进而影响材料的高温力学性能。
对于以上问题,近年来研究者主要从成分和工艺的角度出发,在9%~12% Cr F/M钢的基础上通过调整微量元素的添加以及改变热处理工艺,来设计满足服役要求的F/M钢合金体系,目前已经形成了Cr-Mo和Cr-W两种体系。研究结果表明,微量元素的添加对F/M钢的高温组织稳定性和力学性能至关重要;热处理方式的改变可以实现强度与塑性的良好匹配。
本文系统总结了F/M钢各方面性能的研究进展,包括力学性能、耐腐蚀性能、抗辐照性能以及组织稳定性;进而归纳出合金性能与其成分之间的演化规律;最后,利用基于固溶体溶质化学短程序特征的团簇式成分设计方法探索了现有F/M钢的合金成分演化规律,提出了改良低活化F/M钢的多元团簇式合金成分,并结合热力学计算,有望发展出高性能多元合金化的F/M钢。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
牛犇
王镇华
潘钱付
刘超红
王清
董闯
关键词:  金属材料  铁素体/马氏体钢  辐照性能  微观组织  成分设计    
Abstract: Recently, with the continuous development of nuclear power systems, the main stack type lead-cooled fast neutron reactor(LFR) as the fourth-generation nuclear reactor system has become a hot research topic due to its good thermal conductivity and neutron economy. In order to improve the corrosion and irradiation properties of the cladding material in lead-bismuth coolant, 9%—12% Cr ferritic/martensitic (F/M) steels, as an important high-temperature structural material for thermal power generation, have become a candidate cladding material for lead-cooled fast neutron reactors due to their good resistance to corrosion and radiation-resistant swelling properties.
However, as a candidate cladding material, the corrosion of ferritic/martensitic heat-resistant steels will increase due to the high temperature and irradiation caused by fission of nuclear fuel during service. Under irradiation conditions, the high temperature structural instability of the mate-rial is further aggravated to affect the high temperature mechanical properties of the material.
As regards the above problems, researchers have mainly designed two different F/M steels systems (Cr-Mo and Cr-W) from the perspective of composition and process to satisfy the service requirements by adjusting the addition of trace elements on the basis of 9%—12% Cr F/M steels and changing the heat treatment method. The results show that the addition of trace elements plays a key role in improving the microstructural stability and mechanical properties of F/M steels. A change in the heat treatment process can achieve a good commbination between strength and ductility.
The present work summarizes the research progress on various properties of F/M steels systematically, including mechanical properties, corrosion and irradiation-resistance properties, as well as microstructural stabilities. Then, the relationship between alloy properties and composition of F/M steels was generalized. Finally, a cluster formula approach for compositional design for multi-component alloys was used to explore the variation tendency of alloy compositions of existing F/M steels. And this approach was proposed in light of the chemical short-range orders of solute atoms in solid solution. The cluster formula of the improved low-activation F/M steels was then proposed, which will give a new design method to develop high-performance F/M steels combined with thermodynamics calculations.
Key words:  metallic materials    ferritic/martensitic(F/M)steels    irradiation property    microstructure    composition design
                    发布日期:  2020-11-05
ZTFLH:  TG142  
基金资助: 国家自然科学基金(U1867201;91860108);国家重点研发计划(2017YFB0702400);中央高校基本科研业务费专项资金(DUT19LAB01)
通讯作者:  wangq@dlut.edu.cn   
作者简介:  牛犇,2017 年 7 月毕业于洛阳理工学院,获得工学学士学位。现为大连理工大学材料学院硕士研究生,在王清教授指导下进行研究,主要从事核燃料包壳材料用不锈钢的成分优化与组织稳定性研究。
王清,大连理工大学教授,博士研究生导师。2005年 11 月毕业于大连理工大学,获得博士学位,同年加入大连理工大学材料学院工作。主要从事多元复杂工程合金材料设计与研发,包括特种不锈钢、高性能钛锆合金、高熵合金及高温合金等领域。在国内外重要期刊发表学术论文 80 余篇,申请专利 20 余项。
引用本文:    
牛犇, 王镇华, 潘钱付, 刘超红, 王清, 董闯. 核电用铁素体/马氏体耐热钢的性能与成分研究进展[J]. 材料导报, 2020, 34(19): 19141-19151.
NIU Ben, WANG Zhenhua, PAN Qianfu, LIU Chaohong, WANG Qing, DONG Chuang. Research Progress on Properties and Composition of Ferritic/Martensitic
Heat-resistant Steels for Nuclear Power. Materials Reports, 2020, 34(19): 19141-19151.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070056  或          http://www.mater-rep.com/CN/Y2020/V34/I19/19141
1 Wu Y C, Wang M H, Huang Q Y, et al. Nuclear Science and Enginee-ring,2015,35(2),213(in Chinese).
吴宜灿,王明煌,黄群英,等.核科学与工程,2015,35(2),213.
2 Lorusso P, Bassini S, Nevo A D, et al. Progress in Nuclear Energy,2018,105,318.
3 Smith C F, Halsey W G, Brown N W, et al. Journal of Nuclear Mate-rials,2008,376(3),255.
4 A Technology Roadmap for Generation IV Nuclear Energy Systems-GIF-002-00, United States,2002.
5 Maloy S A, Natesan K, Holcomb D E, et al. Structural alloys for nuclear energy applications, Elsevier, United States,2019.
6 Lv L L, Li Y M, Zhou Y, et al. Nuclear Power Engineering,2016,37(S1),30(in Chinese).
吕亮亮,李垣明,周毅,等.核动力工程,2016,37(S1),30.
7 Klueh R L, Nelson A T. Journal of Nuclear Materials,2007,371(1-3),37.
8 Allen T, Busby J, Meyer M, et al. Materials Today,2010,13(12),14.
9 Müller G, Heinzel A, Konys J, et al. Journal of Nuclear Materials,2002,301(1),40.
10 Schroer C, Wedemeyer O, Novotny J, et al. Corrosion Science,2014,84,113.
11 Anderoglu O A B T. Metallurgical and Materials Transactions A,2013,44(1),70.
12 Yvon P, Le Flem M, Cabet C, et al. Nuclear Engineering and Design,2015,294,161.
13 Song L, Yang X, Zhao Y, et al. Journal of Nuclear Materials,2019,519,22.
14 Klueh R L. International Materials Reviews,2005,50(5),287.
15 Allen T R, Crawford D C. Science and Technology of Nuclear Installations,2007,2007,1.
16 Gong X, Li R, Sun M, et al. Journal of Nuclear Materials,2016,482,218.
17 Swindeman R W, Santella M L, Maziasz P J, et al. International Journal of Pressure Vessels and Piping,2004,81(6),507.
18 Dai Y, Fazio C, Gorse D, et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,2006,562(2),698.
19 Viswanathan R, Bakker W. Journal of Materials Engineering and Performance,2001,10(1),81.
20 Dvoriashin A M, Porollo S I, Konobeev Y V, et al. Journal of Nuclear Materials,2004,329-333,319.
21 Barbier F, Benamati G, Fazio C, et al. Journal of Nuclear Materials,2001,295(2),149.
22 Shiba K, Klueh R L, Miwa Y, et al. Journal of Nuclear Materials,2000,283-287(1),358.
23 Van Der Schaaf B, Tavassoli F, Fazio C, et al. Fusion Engineering and Design,2003,69(1),197.
24 Hashimoto N, Klueh R L. Journal of Nuclear Materials,2002,305(2),153.
25 Huang Q Y, Yu J N, Wan F R, et al. Journal of Nuclear Science and Engineering,2004,24(1),56(in Chinese).
黄群英,郁金南,万发荣,等.核科学与工程,2004,24(1),56.
26 Zumrat Eliniyaz. Design and characterization of ferretic/martensitic steel for nuclear applications. Master's Thesis, Shanghai Jiao Tong University, China,2013(in Chinese).
艾力尼牙孜祖木热提.核反应堆用铁素体/马氏体耐热钢成分设计及性能研究.硕士学位论文,上海交通大学,2013.
27 Huang L X. Study on evolution of microstructure and mechanical properties at elevated temperature for CLAM steel. Ph.D. Thesis, Yanshan University, China,2014(in Chinese).
黄礼新.CLAM钢高温组织演变与力学性能研究.博士学位论文,燕山大学,2014.
28 Li Y F, Huang Q Y, Wu Y C, et al. Nuclear Physics Review,2006,23(2),151(in Chinese).
李艳芬,黄群英,吴宜灿,等.原子核物理评论,2006,23(2),151.
29 Wang W G, Yang Z G, Yan W, et al. Heat Treatment of Metals,2013,38(4),6(in Chinese).
王望根,杨振国,严伟,等.金属热处理,2013,38(4),6.
30 Keller C, Margulies M M, Hadjem-Hamouche Z, et al. Materials Science and Engineering: A,2010,527(24),6758.
31 Cottrell A H. Philosophical Magazine,1953,44(355),829.
32 Chaouadi R. Journal of Nuclear Materials,2008,372(2-3),379.
33 Fan Z Q, Hao T, Zhao S X, et al. Journal of Nuclear Materials,2013,434(1),417.
34 Song M, Zhu R, Foley D C, et al. Journal of Materials Science,2013,48(21),7360.
35 Shang Z, Ding J, Fan C, et al. Acta Materialia,2019,169,209.
36 Bai P W. The preparation and corrosion resistance in Pb-Bi alloy of SiC films on 15-15Ti steel. Master's Thesis, Hefei University of Technology, China,2017(in Chinese).
柏佩文.15-15Ti钢上SiC薄膜的制备及其耐铅铋合金腐蚀性能的研究.硕士学位论文,合肥工业大学,2017.
37 Tian S J. Corrosion behavior and mechanism of T91 and 15-15Ti steels in liquid lead-bismuth eutectic under oxygen control at 500 ℃. Ph.D. Thesis, University of Science and Technology of China, China,2016(in Chinese).
田书建.T91和15-15Ti钢在500 ℃液态铅铋合金氧控条件下腐蚀行为与机理研究.博士学位论文,中国科学技术大学,2016.
38 Frazer D, Qvist S, Parker S, et al. Journal of Nuclear Materials,2016,479,382.
39 Huntz A M, Bague V, Beauplé G, et al. Applied Surface Science,2003,207(1-4),255.
40 Barbier F, Rusanov A. Journal of Nuclear Materials,2001,296(1),231.
41 Shen T L. Irradiation damage in reduced activation ferritic/martenitic steels induced by energetic ions. Ph.D. Thesis, University of Chinese Academy of Science, China,2012(in Chinese).
申铁龙.低活化铁素体/马氏体钢中载能离子辐照损伤研究.博士学位论文,中国科学院大学,2012.
42 Peng L, Huang Q, Ohnuki S, et al. Fusion Engineering and Design,2011,86(9),2624.
43 Hao J K. Fusion reactor material, Chemical Industry Press, China,2007(in Chinese).
郝嘉琨.聚变堆材料,化学工业出版社,2007.
44 Rowcliffe A F, Grossbeck M L. Journal of Nuclear Materials,1984,122(1),181.
45 Du A B, Feng W, Ma H L, et al. Acta Metallurgica Sinica (English Letters),2017,30(11),1049.
46 Zheng Z C, Guo L P, Tang R. Nuclear Physics Review,2017,34(2),211(in Chinese).
郑中成,郭立平,唐睿.原子核物理评论,2017,34(2),211.
47 Krsjak V, Degmova J, Veternikova J S, et al. Journal of Nuclear Mate-rials,2019,523,51.
48 Li X G, Yan Q Z, Ge C C. Journal of Iron and Steel Research,2009,21(6),6 (in Chinese).
黎兴刚,燕青芝,葛昌纯.钢铁研究学报,2009,21(6),6.
49 Xiao X, Song D, Chu H, et al. Advances in Mechanics,2015,45(1),141.
50 Beyerlein I J, Caro A, Demkowicz M J, et al. Materials Today,2013,16(11),443.
51 Klueh R L, Vitek J M. Journal of Nuclear Materials,1985,132(1),27.
52 Chen Y. Nuclear Engineering and Technology,2013,45(3),311.
53 Wakai E, Miwa Y, Hashimoto N, et al. Journal of Nuclear Materials,2002,307-311,203.
54 Schneider H C, Petersen C, Povstyanko A V, et al. Fusion Engineering and Design,2017,124,1019.
55 Sacksteder I, Schneider H C, Materna-Morris E. Journal of Nuclear Materials,2011,417(1-3),127.
56 Gaganidze E, Petersen C, Materna-Morris E, et al. Journal of Nuclear Materials,2011,417(1-3),93.
57 Feng W, Huang C, Du A B, et al. Nuclear Science and Engineering,2014,34(3),302(in Chinese).
冯伟,黄晨,杜爱兵,等.核科学与工程,2014,34(3),302.
58 Prat O, Garcia J, Rojas D, et al. Acta Materialia,2010,58(18),6142.
59 Xu Y, Li W, Wang M, et al. Acta Materialia,2019,175,148.
60 Hald J, Korcakova L. ISIJ International,2003,43(3),420.
61 Hald J. International Journal of Pressure Vessels and Piping,2008,85(1-2),30.
62 Aghajani A, Somsen C, Eggeler G. Acta Materialia,2009,57(17),5093.
63 Abe F, Taneike M, Sawada K. International Journal of Pressure Vessels and Piping,2007,84(1-2),3.
64 Raj B, Vijayalakshmi M. Comprehensive Nuclear Materials,2012,4,97.
65 Zhou X, Liu C, Yu L, et al. Journal of Materials Science & Technology,2015,31(3),235.
66 Yang K, Yan W, Wang Z, et al. Jinshu Xuebao/Acta Metallurgica Sinica,2016,52(10),1207.
67 Chen L, Zeng Z, Zhao Y, et al. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science,2014,45(3),1498.
68 Lee J S, Armaki H G, Maruyama K, et al. Materials Science and Engineering: A,2006,428(1),270.
69 Sawada K, Kushima H, Kimura K, et al. ISIJ International,2007,47(5),733.
70 Kohyama A, Hishinuma A, Gelles D S, et al. Journal of Nuclear Mate-rials,1996,233-237,138.
71 Karlsson L, Nordén H. Acta Metallurgica,1988,36(1),13.
72 Gelles D S. Journal of Nuclear Materials,1996,239,99.
73 Klueh R L,Alexander D J, Sokolov M A. Journal of Nuclear Materials,2002,304(2),139.
74 Klueh R L. High-chromium ferritic and martensitic steels for nuclear applications. S.l.: ASTM International:2001.
75 Nanstad R, et al. Effects of radiation on materials: 18th international symposium, ASTM, USA,1999.
76 Yamamoto Y, Yang Y, Field K G, et al. Letter report documenting progress of second generation ATF FeCrAl alloy fabrication, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States),2014.
77 Wang Q, Zha Q F, Li Q, et al. Journal of Dalian University of Technology,2013,53(6),831(in Chinese).
王清,查钱锋,李群,等.大连理工大学学报,2013,53(6),831.
78 Lincoln Electric Company. The procedure handbook of arc welding-14thed, The Lincoln Electric Company, USA,2000.
79 Jiang B B, Wang Q, Dong C. Acta Physica Sinica,2017,66(2),281(in Chinese).
姜贝贝,王清,董闯.物理学报,2017,66(2),281.
80 Dong C, Wang Q, Qiang J B, et al. Journal of Physics D: Applied Phy-sics,2007,40(15),273.
81 Wang Q. Metallurgical and Materials Transactions A,2013,44(4),1872.
82 Dong C, Qiang J B, Yuan L, et al. Chinese Journal of Nonferrous Metals,2011,21(10),2502(in Chinese).
董闯,羌建兵,袁亮,等.中国有色金属学报,2011,21(10),2502.
83 Wang Q, Guo X L, Zhang R Q, et al. Transactions of Materials and Heat Treatment,2014,35(4),72(in Chinese).
王清,郭晓雷,张瑞谦,等.材料热处理学报,2014,35(4),72.
84 Wang Q, Wang Y M, Qiang J B, et al. Acta Metallurgica Sinica,2004,40(11),1183(in Chinese).
王清,王英敏,羌建兵,等.金属学报,2004,40(11),1183.
85 Zhang J Z, Wen D H, Jiang B B, et al. Chinese Journal of Materials Research,2017,31(5),336(in Chinese).
张军政,温冬辉,姜贝贝,等.材料研究学报,2017,31(5),336.
86 Shi Y, Wang Q, Li Q, et al. Chinese Journal of Materials Research,2014,28(8),594(in Chinese).
石尧,王清,李群,等.材料研究学报,2014,28(8),594.
87 Zhou D Q, Xu X Q, Mao H H, et al. Materials Science & Engineering A,2014,594,246.
88 Zhou D Q, Zhao W X, Mao H H, et al. Materials Science & Engineering A,2015,622,91.
89 Zhao B, Fan J, Chen Z, et al. Materials Characterization,2017,125,37.
90 Shen Y, Zhou X, Shi T, et al. Materials Characterization,2016,122,113.
[1] 秦笑, 王娟, 林高用, 郑开宏, 王海艳, 冯晓伟. 镀铜石墨/铜复合材料的组织和摩擦磨损性能[J]. 材料导报, 2020, 34(Z1): 380-384.
[2] 刘钊扬, 熊柏青, 张永安, 李志辉, 李锡武, 闫丽珍, 温凯. 汽车车身板用6A16铝合金拉深成形金属流动和微观组织相关性研究[J]. 材料导报, 2020, 34(8): 8119-8125.
[3] 张松, 杨静, 胥永刚, 张明月. 仿SIMA法钎焊对Mn-Cu合金与430不锈钢接头组织及性能的影响[J]. 材料导报, 2020, 34(8): 8126-8130.
[4] 信思树, 王镇华, 李春玲, 王清. 体心立方BCC基多元合金中的共格析出及强化[J]. 材料导报, 2020, 34(7): 7130-7137.
[5] 蔺宏涛, 孟强, 王怡嵩, 王家毅, 张韵, 江海涛. 旋转速度对高强度钢Q&P980搅拌摩擦焊接头组织与性能的影响[J]. 材料导报, 2020, 34(6): 6126-6131.
[6] 陈健, 周莉, 刘金洋, 吉红伟, 杨勇, 刘伟, 邓欣, 伍尚华. 真空和渗氮烧结WC-TiC-Co硬质合金的梯度结构形成机理研究[J]. 材料导报, 2020, 34(4): 4077-4082.
[7] 王向杰, 冯蕾, 武靖亭, 肖新华, 苏蓓蓓. 搅拌摩擦焊接ZK60镁合金弯曲性能与断裂行为研究[J]. 材料导报, 2020, 34(4): 4083-4086.
[8] 刘轩之,顾开选 ,翁泽钜,王凯凯,崔晨,郭嘉,王俊杰. 铝合金深冷处理研究进展[J]. 材料导报, 2020, 34(3): 3172-3177.
[9] 王文权, 李雅倩, 李欣, 刘亮, 陈飞. 选区激光熔化制备Ni-Cr-B-Si合金粉末的微观组织与性能[J]. 材料导报, 2020, 34(2): 2077-2082.
[10] 郭世柏, 易正翼, 阙忠游, 孙靖. 低温自蔓燃和还原法制备纳米Mo-30Cu复合粉末及其烧结性能[J]. 材料导报, 2020, 34(18): 18114-18118.
[11] 王占花, 惠卫军, 陈祯, 张永健, 赵晓丽. 钒及奥氏体化温度对Mn-Cr系贝氏体型非调质钢过冷奥氏体连续冷却转变行为的影响[J]. 材料导报, 2020, 34(18): 18145-18151.
[12] 贾岳飞, 王刚, 贾延东, 伍诗伟, 穆永坤, 徐龙, 张靓博, 徐立明. 轻质高熵合金研究现状[J]. 材料导报, 2020, 34(17): 17003-17017.
[13] 白莉, 王宇哲, 吕煜坤, 颜屹, 付梅文. 碳对无Co高熵合金Fe40Mn30Ni10Cr10Al10组织以及力学性能的影响[J]. 材料导报, 2020, 34(17): 17072-17076.
[14] 黄思睿, 伍昊, 朱和国. 共晶高熵合金的研究进展[J]. 材料导报, 2020, 34(17): 17077-17081.
[15] 宗学文, 刘文杰, 张健, 杨雨蒙, 高中堂. 激光选区熔化与铸造成形TC4钛合金的力学性能分析[J]. 材料导报, 2020, 34(16): 16083-16086.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed