Please wait a minute...
材料导报  2020, Vol. 34 Issue (18): 18114-18118    https://doi.org/10.11896/cldb.19080189
  金属与金属基复合材料 |
低温自蔓燃和还原法制备纳米Mo-30Cu复合粉末及其烧结性能
郭世柏, 易正翼, 阙忠游, 孙靖
湖南科技大学材料科学与工程学院,湘潭 411201
Preparation of Nano Mo-30Cu Composite Powders by Low Temperature Self-Propagating and Reduction Method and Their Sintering Properties
GUO Shibo, YI Zhengyi, QUE Zhongyou, SUN Jing
School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
下载:  全 文 ( PDF ) ( 4577KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 Mo-Cu合金具有高电导率、高热导率、低膨胀率等优点,被广泛应用于电子封装材料、热沉材料、集成电路散热元件等领域。本实验以硝酸铜、钼酸铵、葡萄糖和尿素为原料,采用低温自蔓燃法获得Mo-30Cu合金的前驱体粉末,然后在氢气气氛下还原制备纳米Mo-30Cu合金粉末。采用XRD衍射仪和扫描电镜研究了硝酸铜和尿素、硝酸铜和葡萄糖不同物质的量比对Mo-30Cu合金前驱体粉末和还原粉末物相、形貌和性能的影响,探讨了不同烧结温度下Mo-30Cu合金的力学性能和物理性能。实验结果表明,硝酸铜和尿素、硝酸铜和葡萄糖的最佳物质的量比分别为1∶2和1∶0.3,还原粉末细小均匀,平均粒径约为70 nm,两相分布均匀。氢气气氛下在1 300℃烧结2 h所制备合金的致密度、抗弯强度、硬度、电导率、热导率和热膨胀系数分别为98.3%、1 022 MPa、221HV、22 MS/m、195 W·m-1·K-1和10.5×10-6 K-1。合金组织细小均匀,Mo、Cu两相分布均匀,断裂方式为韧性断裂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭世柏
易正翼
阙忠游
孙靖
关键词:  低温自蔓燃  烧结  Mo-30Cu合金  力学性能  微观组织    
Abstract: Mo-Cu alloys have the advantages of high conductivity and thermal conductivity, low expansion rate, etc. They were widely used in electro-nic packaging materials, heat sink materials, integrated circuit heat-dissipation components and other fields. Using copper nitrate, ammo-nium molybdate, glucose and urea as raw material, nano Mo-30Cu composite powders were prepared by low-temperature self-propagating and reduction method. Subsequently, different copper nitrate and urea, glucose ratio precursor powder and powder after reduction were characterized by XRD and SEM. The effect of sintering process on microstructure and properties of Mo-30Cu alloy was investigated. The results showed that the best mole ratio of copper nitrate to urea and glucose is 1∶2 and 1∶0.3, respectively. Mo-30Cu composite powders were fine and uniform, and Mo and Cu phases are evenly distributed, and the average diameter of powders is about 70 nm. The best sintering process is at 1 300℃ for 2 h. The alloy had a density of 98.3%, a bending strength of 1 022 MPa, a hardness of 221HV, a electrical conductivity of 22 MS/m, a thermal conductivity of 195 W·m-1·K-1,and a thermal expansion coefficient of 10.5×10-6 K-1.The microstructure is fine and uniform, and Mo and Cu are even.The fracture morphology showed ductile fracture.
Key words:  low-temperature self-propagating    sintering    Mo-30Cu alloy,mechanical properties    microstructure
               出版日期:  2020-09-25      发布日期:  2020-09-12
ZTFLH:  TG146.4  
基金资助: 国家自然科学基金(51675176);湖南省优秀青年基金(14B065);湖南省自然科学基金(2017JJ2091)
通讯作者:  guoshibo163@163.com   
作者简介:  郭世柏,博士,教授,在湖南科技大学材料科学与工程学院工作。2005年6月毕业于北京科技大学材料科学与工程学院,获博士学位。主要从事先进复合材料的制备及强韧化机理的研究,已承担国家级和省级项目6项,在国内外发表论文50多篇,申报发明专利6项。
引用本文:    
郭世柏, 易正翼, 阙忠游, 孙靖. 低温自蔓燃和还原法制备纳米Mo-30Cu复合粉末及其烧结性能[J]. 材料导报, 2020, 34(18): 18114-18118.
GUO Shibo, YI Zhengyi, QUE Zhongyou, SUN Jing. Preparation of Nano Mo-30Cu Composite Powders by Low Temperature Self-Propagating and Reduction Method and Their Sintering Properties. Materials Reports, 2020, 34(18): 18114-18118.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080189  或          http://www.mater-rep.com/CN/Y2020/V34/I18/18114
1 Wang D Z,Li R,Duan B H. Rare Metal Materials and Engineering, 2017, 8(7),1998(in Chinese).
王德志,李然,段柏华. 稀有金属材料与工程, 2017,8(7),1998.
2 Wang D Z,Zhang Y Q,Duan B H. Nonferrous Metal Science and Engineering, 2018,9(3),15(in Chinese).
王德志,张宇晴,段柏华. 有色金属科学与工程, 2018,9(3),15.
3 Guo S B,Kang Q P. Mining Engineering, 2009, 29(4),92(in Chinese).
郭世柏, 康启平. 矿业工程, 2009, 29(4),92.
4 Wang D Z,Yin B,Sun A K,et al. Journal of Alloys and Compounds, 2016,674, 347.
5 Xin P J,Wei C C,Chun Y B,et al. International Journal of Refractory Metals and Hard Materials, 2019,81, 196.
6 Benavides P A,Soto B,Palma R H. Materials Science and Engineering: A, 2017,701,237.
7 Li B,Jin H,Fei D,et al. International Journal of Refractory Metals & Hard Materials, 2018,73,13.
8 Yao J T,Li C J,Li Y,et al. Materials & Design, 2015,88,774.
9 Wang D, Wang Y, Deng W, et al. Materials Chemistry and Physics, 2018,212,51.
10 Liu Z,Li P,Wan Q, et al. Journal of Alloys and Compounds, 2017,701,215.
11 Ying Y Z,Nian J,Xu Z,et al. Journal of Alloys and Compounds, 2018,765,396.
12 Li P,Liu Z,Cui L,et al. International Journal of Hydrogen Energy, 2014,39,10911.
13 Johnson K,John L. International Journal of Refractory Metals and Hard Materials, 2015,53,80.
14 Souli I,Terziyska V L,Zechner J,et al. Thin Solid Films, 2018,653,301.
15 Sun J, Guo S B. Journal of Materials Heat Treatment, 2016, 37(8),7(in Chinese).
孙靖,郭世柏. 材料热处理学报, 2016,37(8),7.
[1] 何金珊, 方平, 王西涛, 武会宾. Fe-Mn-Al-Nb系轻质低温钢的组织和性能[J]. 材料导报, 2021, 35(2): 2074-2077.
[2] 李健, 左婷婷, 薛江丽, 茹亚东, 赵兴科, 高召顺, 韩立, 肖立业. 热压烧结及轧制工艺对CuCr/CNTs复合材料组织与性能的优化[J]. 材料导报, 2021, 35(2): 2078-2085.
[3] 史平安, 邱勇, 万强, 胡文军, 晏顺坪. 60Co γ射线辐照对硅泡沫材料压缩性能的影响[J]. 材料导报, 2021, 35(2): 2151-2156.
[4] 付振东, 赵健, 戴叶婧, 梁骥, 刘荣正. 碳化硅陶瓷烧结助剂的作用机制与研究进展[J]. 材料导报, 2021, 35(1): 1077-1081.
[5] 黄勇, 史才军, 欧阳雪, 张超慧, 史金华, 吴泽媚. 混凝土劈裂拉伸测试方法及性能研究进展[J]. 材料导报, 2021, 35(1): 1131-1140.
[6] 张欣雨, 毛小南, 王可, 陈茜. 典型α+β钛合金组织对静态和动态性能的影响[J]. 材料导报, 2021, 35(1): 1162-1167.
[7] 张鹏斐, 乔志军, 张志佳, 于镇洋, 赵潭, 苟金龙. 加入增韧材料提高TiO2复合纳米电极的力学和电化学性能[J]. 材料导报, 2020, 34(Z2): 24-29.
[8] 王效军, 刘太奇. 碳纳米颗粒对碳纳米管复合材料电热-力学性能的影响[J]. 材料导报, 2020, 34(Z2): 63-66.
[9] 陈小明, 伏利, 苏建灏, 刘伟, 李育洛, 毛鹏展, 张磊, 惠希东. AlON陶瓷的研究现状与发展趋势[J]. 材料导报, 2020, 34(Z2): 117-122.
[10] 常洪雷, 陈繁育, 金祖权, 王广月, 刘健. 再生骨料混凝土在护岸工程应用的可行性[J]. 材料导报, 2020, 34(Z2): 206-211.
[11] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(Z2): 273-277.
[12] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[13] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[14] 许爱平, 侯继军, 董俊慧. 稀土活性剂对TC4钛合金激光焊焊接接头的影响[J]. 材料导报, 2020, 34(Z2): 348-350.
[15] 赵惠. 成型工艺对钨基复合材料界面组织和性能的影响[J]. 材料导报, 2020, 34(Z2): 351-355.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed