Please wait a minute...
材料导报  2020, Vol. 34 Issue (18): 18145-18151    https://doi.org/10.11896/cldb.19090164
  金属与金属基复合材料 |
钒及奥氏体化温度对Mn-Cr系贝氏体型非调质钢过冷奥氏体连续冷却转变行为的影响
王占花, 惠卫军, 陈祯, 张永健, 赵晓丽
北京交通大学机械与电子控制工程学院,北京 100044
Effects of Vanadium and Austenitizing Temperature on Continuous Cooling Transformation Behavior of Mn-Cr Type Bainitic Forging Steels
WANG Zhanhua, HUI Weijun, CHEN Zhen, ZHANG Yongjian, ZHAO Xiaoli
School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
下载:  全 文 ( PDF ) ( 10414KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究V在贝氏体非调质钢连续冷却过程中的作用,运用热膨胀法测定了添加0.13%(质量分数,下同)V与未添加V的Mn-Cr系贝氏体非调质钢在不同奥氏体化温度(900℃、1 050℃、1 150℃)下的连续冷却相变行为,结合硬度法及金相法获得了实验钢的过冷奥氏体连续冷却转变曲线(CCT曲线)。结果表明,实验钢的CCT曲线受V及奥氏体化温度的影响,提高奥氏体化温度有助于获得贝氏体组织。当奥氏体化温度为900℃时,连续冷却过程中难以获得全贝氏体(≥90%贝氏体,体积分数)组织;当奥氏体化温度提高到1 050℃和1 150℃时,则可在较低的冷却速度下获得全贝氏体组织。奥氏体化温度为900℃时,V对CCT曲线具有较为显著的影响,贝氏体相转变的冷却速度范围和贝氏体含量增大;当奥氏体化温度提高到1 050℃和1 150℃时,V元素降低了获得全贝氏体组织的最低冷却速度,从0.83℃/s和0.26℃/s分别降低为0.43℃/s、0.16℃/s,且扩大了贝氏体相变范围,在低至0.08℃/s的冷却速度下即可获得贝氏体组织。添加V元素能够提高实验钢的硬度,但提高程度受奥氏体化温度及冷却速度的影响。在奥氏体化温度为900℃、冷却速度为0.88℃/s时硬度增量达到峰值(66HV5);在奥氏体化温度为1 050℃和1 150℃时,硬度增量明显降低,硬度增量峰值分别为38HV5和30HV5,且对应的冷却速度显著降低,分别为0.17℃/s和0.08℃/s。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王占花
惠卫军
陈祯
张永健
赵晓丽
关键词:  贝氏体型非调质钢    奥氏体化温度  连续冷却转变曲线  微观组织    
Abstract: The present study was attempted to explore the effects of V and austenitizing temperature on continuous cooling transformation (CCT) beha-vior of bainitic forging steel. Mn-Cr type bainitic forging steels microalloyed with V (0.13wt%) and without V (0wt%) were austenitized at three different temperatures (900℃, 1 050℃ and 1 150℃) and then continuously cooled by using thermal dilatometer to study their CCT beha-vior. Microstructural observations and Vickers hardness measurements of the cooled samples were carried out as complements for the accurate plot of the CCT diagrams. The results show that both V and austenitizing temperature have significant influence on the CCT diagrams. It was difficult to obtain full bainitic (≥90vol% bainite) microstructure when austenitizing temperature was 900℃, while it could be obtained at relatively lower cooling rate when the austenitizing temperature was raised to 1 050℃ and 1 150℃. When austenitizing temperature was 900℃, V showed notable effect on the CCT diagram and the cooling rate range obtaining bainite was broadened and the bainite fraction was enhanced. When the austenitizing temperature was increased to 1 050℃ and 1 150℃, the lowest cooling rate obtaining full bainitic microstructure was lo-wered from 0.86℃/s to 0.43℃/s for austenitizing temperature of 1050℃ and from 0.26℃/s to 0.16℃/s for austenitizing temperature of 1 050℃, and the bainitic transformation range was broadened to as low as 0.08℃/s by the addition of V. It is also found that the hardness was increased by the addition of V and this increase degree depends on austenitizing temperature and cooling rate. A peak value of hardness increase as high as 66HV5 at cooling rate of 0.88℃/s could be obtained for austenitizing temperature of 900℃, while the peak value of hardness increase was significantly decreased to 38HV5 at cooling rate of 0.17℃/s for austenitizing temperature of 1 050℃ and to 30HV5 at cooling rate of 0.08℃/s for austenitizing temperature of 1 150℃.
Key words:  bainitic forging steel    vanadium    austenitizing temperature    continuous cooling transformation    microstructure
                    发布日期:  2020-09-12
ZTFLH:  TG142.1  
基金资助: 国家重点研发计划项目资助(2016YFB0300100)
通讯作者:  wjhui@bjtu.edu.cn   
作者简介:  王占花,女,1989年生,博士研究生,主要从事高性能汽车用钢研究。
惠卫军,北京交通大学机械与电子控制工程学院材料中心主任,教授、博士、博士研究生导师。主要从事先进高强钢及其长寿命化理论和技术研究,发表论文230余篇。
引用本文:    
王占花, 惠卫军, 陈祯, 张永健, 赵晓丽. 钒及奥氏体化温度对Mn-Cr系贝氏体型非调质钢过冷奥氏体连续冷却转变行为的影响[J]. 材料导报, 2020, 34(18): 18145-18151.
WANG Zhanhua, HUI Weijun, CHEN Zhen, ZHANG Yongjian, ZHAO Xiaoli. Effects of Vanadium and Austenitizing Temperature on Continuous Cooling Transformation Behavior of Mn-Cr Type Bainitic Forging Steels. Materials Reports, 2020, 34(18): 18145-18151.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090164  或          http://www.mater-rep.com/CN/Y2020/V34/I18/18145
1 Chen Y B, Ma M T, Wang G D. Strategic Study of CAE, 2014, 16(2),4(in Chinese).
陈蕴博, 马鸣图, 王国栋. 中国工程科学, 2014, 16(2), 4.
2 Chen S L, Hui W J, Wang L H, et al. Iron and Steel, 2014, 49(6), 1(in Chinese).
陈思联, 惠卫军, 王连海, 等. 钢铁, 2014, 49(6), 1.
3 Naylor D J. Ironmaking & Steelmaking, 1989, 16(4), 246.
4 Buchmayr B. Materials Science & Technology, 2016, 32, 517.
5 Xu Z B, Hui W J, Wang Z H, et al. Journal of Iron and Steel Research International, 2017, 24(11), 1085.
6 Sourmail T, Smanio V. Materials Science and Engineering A, 2013, 582, 257.
7 Peng J M, Wang H B, Wu X C. Iron and Steel, 2009, 44(5),56(in Chinese).
彭金明,汪宏斌,吴晓春. 钢铁, 2009, 44(5),56.
8 Wu H, Liu C, Zhao Z, et al. Materials & Design, 2006, 27(8), 651.
9 Hiroyuki M. Special Steel, 2011, 60(1),38.
10 Dong C R, Ren H P, Jin T Z, et al. Microalloyed medium-carbon forging steels, Metallurgical Industry Press, China,2000(in Chinese).
董成瑞, 任海鹏, 金同哲, 等. 微合金非调质钢, 冶金工业出版社, 2000.
11 Gao L Q, Zhang F, Zhang J E, et al. Automobile Technology & Mate-rials, 2015(5), 1(in Chinese).
高亮庆, 张峰, 张俊恩, 等. 汽车工艺与材料, 2015(5),1.
12 Hui W J, Xiao N, Zhao X L, et al. Journal of Iron and Steel Research International, 2017, 24(6), 641.
13 Zhu M H, Wang F M, Wen X R, et al. Heat Treatment of Metals, 2017, 42(8), 20(in Chinese).
朱茂华, 王福明, 文学荣, 等. 金属热处理, 2017, 42(8), 20.
14 Shi Y, Dai G W, An Z G, et al. Materials for Mechanical Engineering, 2018, 42(2), 43(in Chinese).
史远, 戴观文, 安治国, 等. 机械工程材料, 2018, 42(2), 43.
15 Liu L, Wang Y X, Zhou L, et al. Modern Metallurgy, 2017, 45(5), 5(in Chinese).
刘磊, 汪洋鑫, 周蕾, 等. 现代冶金, 2017, 45(5), 5.
16 Gomez M, Rancel L, Escudero E, et al. Journal of Materials Science & Technology, 2014, 30(5), 511.
17 Kim K S, Du L X, Gao C R. Acta Metallurgica Sinica (English Letters), 2015, 28(6), 692.
18 Tang H W, Wang G L, Zou M H, et al. Automobile Technology & Materials, 2015(8),1(in Chinese).
唐宏伟, 王敢利, 邹敏华, 等. 汽车工艺与材料, 2015(8),1.
19 Hui W J, Zhang Y J, Shao C W, et al. Materials and Manufacturing Processes, 2016, 31(6), 770.
20 Quidort D, Brechet Y J M. ISIJ International, 2002, 42(9), 1010.
21 Mesplont C. ISIJ International, 2001, 41(5), 492.
22 Li X C, Zheng Y F, Wu X C. Materials Review B:Research Papers, 2017, 31(6), 86(in Chinese).
李晓成, 郑亚风, 吴晓春. 材料导报:研究篇, 2017, 31(6), 86.
23 Hui W J, Zhang Y J, Shao C W, et al. Journal of Materials Science & Technology, 2016, 32(6), 545.
24 Medina S F, Gómez M, Rancel L. Scripta Materialia, 2008, 58(12), 1110.
25 Medina S F, Rancel L, Gómez M, et al. ISIJ International, 2008, 48(11), 1603.
26 Baker T N. Materials Science and Technology, 2009, 25(9), 1083.
[1] 秦笑, 王娟, 林高用, 郑开宏, 王海艳, 冯晓伟. 镀铜石墨/铜复合材料的组织和摩擦磨损性能[J]. 材料导报, 2020, 34(Z1): 380-384.
[2] 陈龙海, 李长荣, 黎志英, 李正嵩, 刘占林. HRB500E钢中第二相VC的异质形核分析与晶粒细化[J]. 材料导报, 2020, 34(Z1): 436-439.
[3] 郑铭达, 吴红庆, 左鹏鹏, 吴晓春. V对H13型压铸模具钢相变特性的影响[J]. 材料导报, 2020, 34(Z1): 440-443.
[4] 刘钊扬, 熊柏青, 张永安, 李志辉, 李锡武, 闫丽珍, 温凯. 汽车车身板用6A16铝合金拉深成形金属流动和微观组织相关性研究[J]. 材料导报, 2020, 34(8): 8119-8125.
[5] 张松, 杨静, 胥永刚, 张明月. 仿SIMA法钎焊对Mn-Cu合金与430不锈钢接头组织及性能的影响[J]. 材料导报, 2020, 34(8): 8126-8130.
[6] 信思树, 王镇华, 李春玲, 王清. 体心立方BCC基多元合金中的共格析出及强化[J]. 材料导报, 2020, 34(7): 7130-7137.
[7] 林铁贵, 张玉芬. 晶格畸变对VO2相变温度的影响[J]. 材料导报, 2020, 34(6): 6057-6061.
[8] 蔺宏涛, 孟强, 王怡嵩, 王家毅, 张韵, 江海涛. 旋转速度对高强度钢Q&P980搅拌摩擦焊接头组织与性能的影响[J]. 材料导报, 2020, 34(6): 6126-6131.
[9] 陈健, 周莉, 刘金洋, 吉红伟, 杨勇, 刘伟, 邓欣, 伍尚华. 真空和渗氮烧结WC-TiC-Co硬质合金的梯度结构形成机理研究[J]. 材料导报, 2020, 34(4): 4077-4082.
[10] 王向杰, 冯蕾, 武靖亭, 肖新华, 苏蓓蓓. 搅拌摩擦焊接ZK60镁合金弯曲性能与断裂行为研究[J]. 材料导报, 2020, 34(4): 4083-4086.
[11] 刘轩之,顾开选 ,翁泽钜,王凯凯,崔晨,郭嘉,王俊杰. 铝合金深冷处理研究进展[J]. 材料导报, 2020, 34(3): 3172-3177.
[12] 王文权, 李雅倩, 李欣, 刘亮, 陈飞. 选区激光熔化制备Ni-Cr-B-Si合金粉末的微观组织与性能[J]. 材料导报, 2020, 34(2): 2077-2082.
[13] 郭世柏, 易正翼, 阙忠游, 孙靖. 低温自蔓燃和还原法制备纳米Mo-30Cu复合粉末及其烧结性能[J]. 材料导报, 2020, 34(18): 18114-18118.
[14] 贾岳飞, 王刚, 贾延东, 伍诗伟, 穆永坤, 徐龙, 张靓博, 徐立明. 轻质高熵合金研究现状[J]. 材料导报, 2020, 34(17): 17003-17017.
[15] 白莉, 王宇哲, 吕煜坤, 颜屹, 付梅文. 碳对无Co高熵合金Fe40Mn30Ni10Cr10Al10组织以及力学性能的影响[J]. 材料导报, 2020, 34(17): 17072-17076.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed