Please wait a minute...
材料导报  2020, Vol. 34 Issue (18): 18152-18158    https://doi.org/10.11896/cldb.19070244
  高分子与聚合物基复合材料 |
可交联型P(VDF-CTFE-DB)/PMN-PT-Sm纳米复合薄膜的制备及介电和储能性能
何亭睿1,2, 王一平1, 李雄杰1,2, 陈朋1,2, 胡悫睿1,2, 杨颖1, 宁洪龙3
1 南京航空航天大学机械结构力学及控制国家重点实验室,南京 210016
2 南京航空航天大学材料科学与技术学院,南京 210016
3 华南理工大学材料科学与工程学院,高分子光电材料与器件研究所,发光材料与器件国家重点实验室,广州 510640
Preparation of Cross-linked P(VDF-CTFE-DB)/PMN-PT-Sm Nanocomposite Films and Their Dielectric and Energy Storage Performances
HE Tingrui1,2, WANG Yiping1, LI Xiongjie1,2, CHEN Peng1,2, HU Querui1,2, YANG Ying1, NING Honglong3
1 State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2 College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
3 State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
下载:  全 文 ( PDF ) ( 6307KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以聚偏氟乙烯-三氟氯乙烯(P(VDF-CTFE))为原料,经过消去反应脱除氯化氢,得到含有分子内双键的P(VDF-CTFE-DB)。选择高介电的钐掺杂铌镁酸铅-钛酸铅(PMN-PT-Sm)铁电陶瓷作为复合相,以可交联的P(VDF-CTFE-DB)作为聚合物基体,通过自由基反应形成交联型P(VDF-CTFE-DB)/PMN-PT-Sm纳米复合薄膜。研究了不同掺杂量的PMN-PT-Sm和交联结构对P(VDF-CTFE-DB)/PMN-PT-Sm纳米复合薄膜介电、储能及漏电流性能的影响。结果表明,当掺杂30%(体积分数,下同)的PMN-PT-Sm时,纳米复合薄膜在100 Hz时的介电常数最大为65。当掺杂20%的PMN-PT-Sm时,纳米复合薄膜的击穿电场为3 200 kV/cm,储能密度达到最大值,为9.7 J/cm3。交联结构的引入显著提高了纳米复合薄膜的击穿电场,有效降低了纳米复合薄膜的漏电流、介电损耗以及提高了纳米复合薄膜的储能密度。此外,这种交联结构能赋予纳米复合薄膜优良的耐溶剂性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何亭睿
王一平
李雄杰
陈朋
胡悫睿
杨颖
宁洪龙
关键词:  氟聚物  交联结构  介电储能  铁电陶瓷  纳米复合薄膜    
Abstract: Afluoropolymer with double bonds (P(VDF-CTFE-DB)) was synthesized via controlled dehydrochlorination of poly(vinylidene fluoride-co-chlorotrifluoroethylene) (P(VDF-co-CTFE)). High permittivity component of samarium-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT-Sm) ferroelectric was selected as the inorganic composite phase, and the cross-linkable P(VDF-CTFE-DB) was used as polymer matrix. Cross-linking P(VDF-CTFE-DB)/PMN-PT-Sm composite film was synthesized by reacting the free radical initiator. The dielectric properties, breakdown strength, energy-storage performances, and solvent resistance of the P(VDF-CTFE-DB)/PMN-PT-Sm nanocomposite films were investigated. As a result, the dielectric constant increases with increasing the volume fraction of PMN-PT-Sm nanoparticles. A maximal dielectric constant of 65 at 100 Hz associated with a dielectric loss of only about 0.058 was obtained in the P(VDF-CTFE-DB)/PMN-PT-Sm nanocomposite film with 30% of PMN-PT-Sm nanoparticle addition. It is experimentally found that the cross-linked network structure has a great influence on the breakdown strength, energy storage performances and compatibility of P(VDF-CTFE-DB)/PMN-PT-Sm nanocomposite films. The significantly improved breakdown strength up to 3 200 kV/cm and the highest discharge energy density of about 9.7 J/cm3 for the cross-linking P(VDF-CTFE-DB)/PMN-PT-Sm nanocomposite film with 20% of PMN-PT-Sm have been achieved. Constructing cross-linked networks among P(VDF-CTFE-DB) and PMN-PT-Sm nanoparticles could be an effective way to decrease the leakage current and dielectric loss, as well as to enhance the breakdown strength and the energy storage performances in the polymer nanocomposites.
Key words:  fluoropolymer    crosslink structure    dielectric energy storage    ferroelectric ceramic    nano composite film
                    发布日期:  2020-09-12
ZTFLH:  TB332  
  TB324  
基金资助: 国家自然科学基金(11274174;51790492);111项目(B12021)
通讯作者:  yipingwang@nuaa.edu.cn   
作者简介:  何亭睿,2017年7月毕业于浙江理工大学,获得理学学士学位。现为南京航空航天大学材料科学与技术学院机械结构力学及控制国家重点实验室硕士研究生。主要从事聚合物基柔性压电材料及储能材料的研究。
王一平,教授,博士研究生导师。2002年于南京大学物理系获凝聚态物理专业理学博士学位。现任南京航空航天大学机械结构力学及控制国家重点实验室教授。研究领域聚焦于介电、压电、铁电氧化物功能材料、多铁性材料。
引用本文:    
何亭睿, 王一平, 李雄杰, 陈朋, 胡悫睿, 杨颖, 宁洪龙. 可交联型P(VDF-CTFE-DB)/PMN-PT-Sm纳米复合薄膜的制备及介电和储能性能[J]. 材料导报, 2020, 34(18): 18152-18158.
HE Tingrui, WANG Yiping, LI Xiongjie, CHEN Peng, HU Querui, YANG Ying, NING Honglong. Preparation of Cross-linked P(VDF-CTFE-DB)/PMN-PT-Sm Nanocomposite Films and Their Dielectric and Energy Storage Performances. Materials Reports, 2020, 34(18): 18152-18158.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070244  或          http://www.mater-rep.com/CN/Y2020/V34/I18/18152
1 Ji W, Deng H, Sun C, et al. Composites Science and Technology, 2019, 172, 117.
2 Pan Z, Yao L, Liu J, et al. Journal of Materials Chemistry C, 2019, 7(2), 405.
3 Prateek, Bhunia R, Siddiqui S, et al. ACS Applied Materials & Interfaces, 2019, 11(15), 14329.
4 Barshaw E J, White J, Chait M J, et al. IEEE Transactions on Magne-tics, 2006, 43(1), 223.
5 Dai Z H, Li T, Gao Y, et al. Composites Science and Technology, 2019, 169, 142
6 Xie Y, Jiang W, Fu T, et al. ACS Applied Materials & Interfaces, 2018, 10(34), 29038.
7 Chen G, Lin X, Li J, et al. Ceramics International, 2018, 44(13), 15331.
8 Cho S D, Lee S Y, Hyun J G, et al. Journal of Materials Science: Materials in Electronics, 2005, 16(2), 77.
9 Yu K, Wang H, Zhou Y C, et al. Journal of Applied Physics, 2013, 113(3), 034105.
10 Li F, Lin D, Chen Z, et al. Nature Materials, 2018, 17(4), 349.
11 Cheng Z, Zhou W, Zhang C, et al. Journal of Polymer Science Part B: Polymer Physics, 2018, 56(2), 193.
12 Bai D P, Tan S B, Zhang Z Z.Polymer Materials Science and Enginee-ring, 2013, 29(9), 15(in Chinese).
白德鹏, 谭少博, 张志成. 高分子材料科学与工程, 2013, 29(9), 15.
13 Cheburkov Y, Moore G G I. Journal of Fluorine Chemistry, 2003, 123(2), 227.
14 Tan S, Li J, Gao G, et al.Journal of Materials Chemistry, 2012, 22(35), 18496.
15 Lu X, Zhang L, Tong Y, et al. Composites Part B: Engineering, 2019, 168, 34.
16 Tang Y, Shuang X, Xie Y, et al. Composites Science & Technology, 2016, 124, 10.
17 Lee Y J, Ham S R, Kim J H, et al. Scientific Reports, 2018, 8(1), 2045.
18 Zhang X, Li B W, Dong L, et al. Advanced Materials Interfaces, 2018, 5(11), 2196.
[1] 杭思羽, 徐闻婷, 韩志伟, 王伯良. 铝-氟聚物含能亚稳态复合材料研究进展[J]. 材料导报, 2019, 33(Z2): 410-414.
[2] 卫芳彬, 张雷阳, 王颖, 李洋, 刘岗. 二氧化铈掺杂钛酸铋钠基陶瓷的高储能密度及温度稳定性[J]. 材料导报, 2019, 33(16): 2648-2653.
[3] 毛龙, 刘跃军, 白永康, 刘小超. 原位接枝聚合改性LDHs/PCL纳米复合薄膜的制备及氧气阻隔性能*[J]. 《材料导报》期刊社, 2017, 31(18): 43-48.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed