Please wait a minute...
材料导报  2020, Vol. 34 Issue (17): 17077-17081    https://doi.org/10.11896/cldb.19110176
  高熵合金 |
共晶高熵合金的研究进展
黄思睿, 伍昊, 朱和国
南京理工大学材料科学与工程学院,南京 210094
Research Progress on Eutectic High Entropy Alloys
HUANG Sirui, WU Hao, ZHU Heguo
College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
下载:  全 文 ( PDF ) ( 1719KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 青铜是人类历史上最早的合金,它的发明掀开了金属冶铸史新的篇章。迄今为止投入使用的实用型合金体系已达30多种,其中具备低熔点、良好流动性等特殊性质的共晶合金是应用极为广泛的一种合金, 比如钢(Fe-C)、Al-Si合金、Ag-Cu合金。
   高熵合金被称为最近几十年来在合金化理论方面取得的三大突破之一,从理论上来说,任意选取13种常见元素就能设计出7 000多种高熵合金体系,因此,与以一种元素为主的传统合金相比,高熵合金的设计空间更大。同时,研究发现,与形成复杂金属间化合物的传统合金相比较,高熵合金能够形成单一面心立方、单一体心立方或者面心立方与体心立方共存的简单微观结构,因此高熵合金表现出高强度、高耐磨性、高耐腐蚀性等优异的性能,并且控制高熵合金的成分能够改变其特定性能,从而满足不同的设计需求。综上,高熵合金具有很大的研究价值和应用空间。
   在共晶合金和高熵合金基础上合成的共晶高熵合金兼具共晶合金与高熵合金的成分特点,其概念一经提出就引起了学者们的广泛关注,它的出现为合金的设计与制备提供了新的思路,与传统的高熵合金相比,共晶高熵合金具有超高强塑性、耐磨性能与耐腐蚀性能等,拥有极大的研究价值。迄今为止,多种新型的共晶高熵合金已经被成功制备,学者们对卢一平教授设计的第一种共晶高熵合金AlCoCrFeNi2.1的生长机理、强化机制等进行了深入的研究与分析。本文简要阐述了共晶高熵合金的合成,对目前共晶高熵合金的一些成果进行了综述,主要从成分设计、制备方法、性能三个方面进行了介绍,并对其发展前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄思睿
伍昊
朱和国
关键词:  共晶高熵合金  成分设计  制备方法  性能    
Abstract: As the earliest alloy in human history, the invention of bronze opened a new chapter in the history of metal smelting. There are more than 30 practical alloy systems that have been used for industrial sectors so far. Eutectic alloys, such as steel (Fe-C), Al-Si alloy, Ag-Cu alloy, have been widely used because of special properties such as low melting point and good fluidity.
High entropy alloys are known as one of the three major breakthroughs in alloying theory in recent decades. Theoretically, more than 7 000 high entropy alloy systems can be designed from 13 kinds of arbitrarily selected common elements. Compared with traditional alloys that based on one element, the design space of high entropy alloys are much larger. Moreover, it is found that high entropy alloys can form simple microstructures such as a simple face-centered cubic, single body-centered cubic or face-centered cubic and body-centered cubic while conventional alloys gene-rally form complex intermetallic compounds. Hence, high entropy alloys owe high strength, high wear resistance, high corrosion resistance and other excellent properties. Specific performance changes can be achieved by controlling the composition of high entropy alloys to meet different design needs, so high entropy alloys have great research value and application space.
Eutectic high entropy alloys (EHEAs) have composition characteristics of eutectic alloys and high entropy alloys. EHEAs have gained extensive attention in recent years because of the super strength, plasticity, resistance to friction and corrosion. So far, a variety of new eutectic high entropy alloys have been successfully prepared. The scholars have carried out in-depth research on the growth mechanism and strengthening mechanism of the first eutectic high entropy alloy AlCoCrFeNi2.1 designed by Professor Yiping Lu. EHEAs have gained extensive attention in recent years because of the super strength, plasticity, resistance to friction and corrosion. In this paper, the production of eutectic EHEAs is briefly described, and the achievements are reviewed. Moreover, the composition design, preparation method and studies about EHEAs' properties are mainly introduced, and the prospects for their future development are discussed.
Key words:  eutectic high entropy alloy    composition design    preparation method    property
               出版日期:  2020-09-10      发布日期:  2020-09-02
ZTFLH:  TG131  
基金资助: 国家自然科学基金(51571118;51371098)
通讯作者:  zhg1200@sina.com   
作者简介:  黄思睿,2019年6月毕业于南京农业大学,获得工学学士学位。现为南京理工大学材料科学与工程学院博士研究生,在朱和国教授的指导下进行研究。目前主要研究领域为高熵合金基复合材料。
朱和国,东南大学博士,南京理工大学教授、博士研究生导师。主持国家自然基金面上项目、江苏省自然基金面上项目各两项,参加国防基础研究、国家自然基金等项目多项,发表期刊论文80余篇,其中以第一作者发表的论文被SCI收录28篇,二区以上12篇。授权专利6项。教育部自然科学二等奖1项(排名第4)。10余种外文期刊审稿人。出版独立专著《内生型铝基复合材料反应机制与力学性能》一部,国防工业出版社出版,28万字,2013;主持编著“十一五”国家级规划教材、“十二五”江苏省高校重点教材、兵工优秀教材《材料科学研究与测试方法》(第1版~第3版),东南大学出版社;编著“十三五”江苏省高校重点教材、兵工优秀教材《复合材料原理》(第1版、第2版),电子工业出版社。主讲中国大学MOOC网课程《材料研究方法》等。
引用本文:    
黄思睿, 伍昊, 朱和国. 共晶高熵合金的研究进展[J]. 材料导报, 2020, 34(17): 17077-17081.
HUANG Sirui, WU Hao, ZHU Heguo. Research Progress on Eutectic High Entropy Alloys. Materials Reports, 2020, 34(17): 17077-17081.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110176  或          http://www.mater-rep.com/CN/Y2020/V34/I17/17077
1 Chen Y X, Zhu S, Wang X M, et al. Journal of Materials Engineering, 2017,45(11), 129(in Chinese).
陈永星,朱胜,王晓明,等.材料工程,2017,45(11), 129.
2 Hu X L. Research on modification of AlCoCrFeNi2.1 eutectic high-entropy alloys by special processing processes. Master's Thesis, Hunan University, China, 2018(in Chinese).
胡相丽.特殊加工工艺对AlCoCrFeNi2.1共晶高熵合金的改性研究. 硕士学位论文, 湖南大学, 2018.
3 Wani I S, Bhattacharjee T, Sheikh S, et al. Materials Science and Engineering A, 2016, 675, 99.
4 Lu Y P, Dong Y, Guo S, et al. Scientific Reports, 2014, 4, 6200.
5 Liao Y, Baker I. Materials Characterization, 2008, 59, 1546.
6 Li J G, Hu R, Yang J G, et al.Ceramics International, 2019, 45(14), 16776.
7 Ju N, Lei Y C, Chen G, et al. Materials Reports B:Research Papers, 2019,33(10), 3489(in Chinese).
鞠娜,雷玉成,陈钢,等.材料导报:研究篇, 2019, 33(10), 3489.
8 Zhang Y B. Multi-phase field numerical simulation of lamellar growth morphology stability in Pb-Sn eutectic alloys. Master's Thesis, Nanchang Hangkong University, China, 2016(in Chinese).
张云波.Pb-Sn共晶合金层片状生长稳定性的相场法数值模拟. 硕士学位论文, 南昌航空大学, 2016.
9 Zhang J F, Hao W W, Xu P F, et al. Rare Metal Materials and Engineering, 2019, 48(5), 1523(in Chinese).
张建飞,郝文纬,徐鹏飞,等.稀有金属材料与工程, 2019, 48(5), 1523.
10 Jiang P D, Gan Z H, Hua C W, et al. Special Casting & Nonferrous Alloys, 2018, 38(6), 692(in Chinese).
蒋攀辉,甘章华,华称文,等.特种铸造及有色合金,2018, 38(6), 692.
11 Baker I, Wu M, Wang Z W. Materials Characterization, 2018, 147, 545.
12 Gao M C, Zhang B, Guo S M, et al.Metallurgical and Materials Transactions, 2016, 47(7), 3322.
13 Gludovatz B, Hohenwarter A, Catoor D, et al. Science, 2014, 345, 1153.
14 Zhang M D, Zhang L J, Fan J T, et al. Materials Science and Engineering A, 2018, 733, 299.
15 Lu Y P, Gao X Z, Jiang L, et al. Acta Materialia, 2017, 124, 143.
16 Eleti R R, Bhattacharjee T, Zhao L J, et al. Materials Chemistry and Physics, 2018, 210, 176.
17 Fan J T, Zhang LJ, Yu PF, et al. Materials Science and Engineering A, 2018, 728, 30.
18 Liu W H, Wu Y, He J Y, et al. Scripta Materialia, 2013, 68(7), 526.
19 He J Y, Liu W H, Wang H, et al.Acta Materialia, 2014, 62, 105.
20 Gao P, Sun H F, Li Z L, et al. Physical Testing and Chemical Analysis Part A(Physical Testing), 2010, 46(11), 677(in Chinese).
高鹏,孙宏飞,李忠丽,等.理化检验(物理分册), 2010, 46(11), 677.
21 Jiang H, Han K M, Gao X X, et al. Materials and Design, 2018, 142, 101.
22 Tian F Y, Lajos K V, Chen N X, et al. Intermetallics, 2015, 58, 1.
23 Dong S Z, Wei B Q, Sui X, et al. Journal of Liaoning Technical University (Natural Science), 2018, 37(2), 376(in Chinese).
董世知,韦宝权,隋心,等.辽宁工程技术大学学报(自然科学版), 2018, 37(2), 376.
24 Li A M, Zhang X Y. Nonferous Metals, 2009, 61(4), 18(in Chinese).
李安敏,张喜燕.有色金属, 2009, 61(4), 18.
25 Hou L L, Guo Q, Hui J T, et al. Hot Working Technology, 2019,48(14), 23(in Chinese).
侯丽丽,郭强,惠嘉涛,等.热加工工艺, 2019, 48(14),23.
26 Jain R, Rahul M R, Jain S, et al. Transactions of Indian Institute of Me-tals, 2018, 71(11), 2795.
27 Rahul M R, Phanikumar G. Metallurgical and Materials Transactions, 2019, 2594.
28 Lu Y P, Jiang H, Guo S, et al.Intermetallics, 2017, 9, 124.
29 Jin X, Bi J, Zhang L, Zhou Y, et al. Journal of Alloys and Compounds, 2019, 770, 655.
30 Rogal L, Morgiel J, Swiatek Z, Czerwinski F. Materials Science and Engineering A, 2016, 65, 590.
31 Jin X, Zhou Y, Zhang L, et al. Materials Letters, 2018, 216, 144.
32 Gao X Z, Lu Y P, Zhang B, et al. Acta Materialia, 2017, 141, 59.
33 Ge Y H. Study on microstructure and properties of directional solidification of AlCoCrFeNi2.1 eutectic high entropy alloy. Master's Thesis, Xi'an University of Technology, China, 2011(in Chinese).
葛玉会.AlCoCrFeNi2.1共晶高熵合金定向凝固组织及性能的研究.硕士学位论文, 西安理工大学,2019.
34 Bhattacharjee T, Zheng R X, Chong Y, et al. Materials Chemistry and Physics, 2018, 210, 207.
35 Jin X, Zhou Y, Zhang L, et al. Material and Design, 2018, 143, 49.
36 Samal S, Rahul M R, Kottada R S, et al. Materials Science and Enginee-ring A, 2016, 664, 227.
37 Vrtnik S, Guo S, Sheikh S, et al. Intermetallics, 2018, 93, 122.
38 Tan Y M, Li J S, Wang J, et al. Intermetallics, 2017, 85, 74.
39 Wu Q F, Wang Z J, Zheng T, et al. Materials Letters, 2019, 253, 268.
40 Li L M, Feng Y L, Yang L N. Hot Working Technology, 2019(20), 6(in Chinese).
李立铭,冯运莉,杨丽娜.热加工工艺,2019(20), 6.
41 Zhou H, Yang S F, Yang Y N. Hot Working Technology, 2018, 47(18), 5(in Chinese).
周航,杨少锋,杨亚楠,等.热加工工艺, 2018, 47(18), 5.
42 Yan T W, Xie D H, Chen Z L. Chinese Journal of Vacuum Science and Technology,2019, 39(5), 441(in Chinese).
闫婷文,谢东华,陈志磊,等.真空科学与技术学报, 2019, 39(5), 441.
43 Niu Z Z, Xu J, Wang T, et al. Intermetallics, 2019, 112,106550.
44 Huo W Y, Zhou H, Fang F, et al. Journal of Alloys and Compounds, 2018, 735, 897.
45 Yang Z S, Wang Z J, Wu Q F, et al. Applied Physics A, 2019, 125, 208
46 Zhang Y L, Li J G, Wang X G, et al. Journal of Materials Science and Technology, 2019, 35(5), 902.
47 Zheng H T, Chen R R, Qin G, et al. Intermetallics, 2019, 113, 106569.
48 Lu Y, Gao X, Jiang L, et al. Acta Materialia, 2017, 124, 143.
49 Ai C, He F, Guo M, et al. Journal of Alloys and Compounds, 2018, 735, 2653.
50 Jiang L, Cao Z Q, Jie J C, et al. Journal of Alloys and Compounds, 2015, 649, 585.
51 Reddy S R, Yoshida S, Sunkari U, et al. Materials Science and Enginee-ring A, 2019, 764, 138226.
52 Jiang H. Study on composition design and mechanical properties of CoFeNi(Cr)-M eutectic high entropy alloys. Ph.D. Thesis, Dalian University of Technology, China, 2018 (in Chinese).
姜慧. CoFeNi(Cr)-M共晶高熵合金成分设计与力学性能研究.博士学位论文, 大连理工大学, 2018.
53 Yu Y, He F, Qiao Z H, et al. Journal of Alloys and Compounds, 2018, 775, 1376.
54 Yi Y N, Ma Y L, Luo X X, et al. Journal of Chongqing University of Technology(Natural Science),2017,31(4), 50(in Chinese).
易雅楠,麻彦龙,罗肖肖,等.重庆理工大学学报(自然科学), 2017, 31(4), 50.
55 Hasannaeimi V, Mukherjee S. Journal of Electroanalytical Chemistry, 2019, 848, 113331.
56 Ding P P, Mao A Q, Zhang X, et al. Journal of Alloys and Compounds, 2017, 721, 609.
[1] 魏声培. 分子印迹型二氧化钛的制备方法研究进展[J]. 材料导报, 2020, 34(Z1): 22-25.
[2] 吕展衡, 陈品鸿, 许冰, 罗颖, 周武艺, 董先明. 巯基-双键点击反应制备光固化红光转光膜及其性能[J]. 材料导报, 2020, 34(Z1): 111-115.
[3] 王枭, 郭伟, 胡月阳, 陈芹, 仇佳琳, 李正阳, 陈佳彬, 管荣成. 硫硅酸钙的合成及水化性能的研究[J]. 材料导报, 2020, 34(Z1): 169-172.
[4] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[5] 卢喆, 冯振刚, 姚冬冬, 纪鸿儒, 秦卫军, 于丽梅. 超高性能混凝土工作性与强度影响因素分析[J]. 材料导报, 2020, 34(Z1): 203-208.
[6] 储腾跃, 李矜, 赵学超, 董兵海, 李磊. 高流态高强混凝土收缩性能改善研究[J]. 材料导报, 2020, 34(Z1): 213-215.
[7] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[8] 周文娟, 张志伟, 徐玉波. 建筑垃圾再生骨料无机混合料的力学及抗冻性能[J]. 材料导报, 2020, 34(Z1): 234-236.
[9] 李毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020, 34(Z1): 280-282.
[10] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[11] 宋文杰, 刘洁, 董会萍, 张光, 王彤. 超轻镁锂合金熔炼工艺研究[J]. 材料导报, 2020, 34(Z1): 316-321.
[12] 黄同瑊, 晁代义, 宋晓霖, 张伟, 王志雄, 张华, 吕正风. 热轧工艺对Al-Cu-Mg合金组织及性能的影响[J]. 材料导报, 2020, 34(Z1): 322-324.
[13] 宋韦韦, 罗顺成, 韩兆玉, 晁代义, 方清万, 吕正风, 程仁策. 7050铝合金铸锭中Al3Zr的析出情况对锻板性能的影响[J]. 材料导报, 2020, 34(Z1): 334-337.
[14] 李亚林, 孙垒, 曹柳絮, 焦孟旺, 罗伟, 邱振宇, 王畅. 汽车制动盘用铝基复合材料摩擦磨损研究进展[J]. 材料导报, 2020, 34(Z1): 361-365.
[15] 冉小杰, 周露, 黄福祥, 曾利娟. Cu/Al界面研究进展[J]. 材料导报, 2020, 34(Z1): 366-369.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed