Please wait a minute...
材料导报  2020, Vol. 34 Issue (3): 3133-3141    https://doi.org/10.11896/cldb.19030258
  金属与金属基复合材料 |
非晶合金零件成形技术研究进展
丁华平1,龚攀1,2,,姚可夫3,邓磊1,金俊松1,王新云1
1 华中科技大学材料成形与模具技术国家重点实验室,武汉430074
2 湖南大学汽车车身先进设计制造国家重点实验室,长沙410082
3 清华大学材料学院,北京100084
The Forming of Amorphous Alloy Parts: a Technological Review
DING Huaping1,GONG Pan1,2,,YAO Kefu3,DENG Lei1,JIN Junsong1,WANG Xinyun1
1 State Key Laboratory of Material Processing and Die and Mould Technology,Huazhong University of Science and Technology,Wuhan 430074,China
2 State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body,Hunan University,Changsha 410082,China
3 School of Materials Science and Engineering,Tsinghua University,Beijing 100084,China
下载:  全 文 ( PDF ) ( 16467KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 非晶合金作为一种结构不同于传统晶体金属、性能优异的新型材料一直是凝聚态物理学家和材料学家关注的热门领域。近几十年来,非晶合金的基础理论研究和制备工艺都取得了巨大进步,非晶合金作为一种极具应用前景的结构材料和功能材料,正在逐渐由实验室走向商业应用,推动科技发展。一种新材料想要最终走向商业应用,必须要有与之相适应的高生产率、低成本的零件成形技术。但是非晶合金的制备需要较快的冷却速率、高真空、高纯原料等苛刻条件,成本相对较高。同时非晶合金在室温下强度高、脆性大的特性使其难以机加工,热塑性成形时又极易发生晶化,难以成形大尺寸、复杂形状的零件,这严重限制了它的广泛应用。针对非晶合金的特点开发相应的零件成形技术成为学者们研究的重要课题。随着非晶成形能力较强的合金体系的出现,相应的非晶零件成形技术也得到了极大的发展。目前非晶合金的零件成形技术主要包括铸造成形、热塑性成形、焊接、粉末烧结、增材制造技术等,成形零件的尺寸极限跨及纳米至厘米尺度,复杂程度、制备和成形效率都得到大幅提升。但是每种成形技术都在成形效率、尺寸、性能、成本等方面有些许局限性,难以完全实现非晶合金零件的工业化生产和应用。本文简要综述了目前非晶合金铸造成形、热塑性成形、焊接、粉末烧结、增材制造技术的最新研究进展,分析了现有成形技术的优缺点及非晶合金成形的难点,最后指出外加能场复合、多种工艺复合的复合制造方式将是非晶合金零件成形技术未来发展的重要方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁华平
龚攀
姚可夫
邓磊
金俊松
王新云
关键词:  非晶合金  铸造  热塑性成形  焊接  粉末烧结  增材制造    
Abstract: As a new class of materials with excellent properties and different structure compared to traditional crystal metals, amorphous alloys have been attracting great interest from condensed matter physicists and materials scientists. In recent decades, the basic theoretical research and preparation technology of amorphous alloys have made great progress. Amorphous alloys, which posses wide application prospects as structural materials and functional materials, are gradually moving from laboratory to commercial applications and promoting the development of science and technology.
To realize the commercial application of a new material, it is necessary to have high productivity and low-cost manufacturing technology of parts. However, as the preparation of amorphous alloys requires rapid cooling rate, high vacuum, high purity raw materials, the cost is relatively high. Moreover, the high strength and high brittleness at room temperature make the amorphous alloys difficult to be machined, while crystallization is easy to occur during the thermoplastic forming process. In brief, it is still difficult to fabricate amorphous alloy parts with large size and complex shape, which seriously restricts the wide application of amorphous alloys. Thus, it has become an important subject for scholars to develop the novel part forming technologies according to the characteristics of amorphous alloy.
With the appearance of alloy system with strong amorphous forming ability, the forming technology of amorphous alloy parts has also been greatly developed. At present, the forming technology of amorphous alloys mainly includes casting forming, thermoplastic forming, welding, powder sintering, additive manufacturing technology, etc. The size limit of the formed part spans from nanometer to centimeter, and the complexity, preparation and forming efficiency are also greatly improved. However, each forming technology has some limitations in forming efficiency, size, performance and cost, which makes it difficult to fully realize the industrial production and application of amorphous alloy parts.
This paper reviews the latest research progress in the forming technologies of amorphous alloys, including casting, thermoplastic forming, welding, powder sintering and additive manufacturing. The advantages and disadvantages of existing forming technologies and the difficulties in amorphous alloys forming are also analyzed. Finally, it is pointed out that combining of different processing methods and introducing external ene-rgy fields may be important development directions for the fabrication of amorphous alloy parts in the future.
Key words:  amorphous alloy    casting    thermoplastic forming    welding    powder sintering    additive manufacturing
                    发布日期:  2020-01-03
ZTFLH:  TG139.8  
基金资助: 国家自然科学基金(51601063;51725504);湖北省自然科学基金创新群体项目(2018CFA003);湖南大学汽车车身先进设计制造国家重点实验室开放基金(31715005);清华大学摩擦学国家重点实验室开放基金(SKLTKF17B03)
通讯作者:  pangong@hust.edu.cn   
作者简介:  丁华平,2018年6月毕业于合肥工业大学,获得工学学士学位。现为华中科技大学材料学院博士研究生。主要研究领域为非晶合金的热塑性成形;龚攀,副教授,硕士研究生导师。2006年7月毕业于华中科技大学,获工学学士学位,2013年7月毕业于清华大学,获工学博士学位。2014年—2016年在美国耶鲁大学进行博士后研究。主要从事非晶合金、高熵合金及金属塑性成形工艺方面的工作,发表SCI论文40余篇,获授权中国发明专利5项。2018年入选湖北省“楚天学子”;姚可夫,教授,博士生导师,主要从事非晶合金、高熵合金、纳米晶等先进金属材料及其加工与应用研究。主持和参与了十三五国家重点研究发计划项目(“特种软磁合金与应用”项目首席)、“973”项目课题、“863”项目、国家自然科学基金面上项目与重点项目、国际合作项目、与企业合作项目的研究工作,发表学术论文300余篇,其中SCI收录论文180余篇,获授权发明专利20余项;王新云,教授,博士研究生导师,国家杰出青年科学基金获得者,材料成形与模具技术国家重点实验室副主任,材料加工系主任。2002年于哈尔滨工业大学材料加工工程专业获博士学位,毕业后分配至华中科技大学工作,现任中国塑性工程学会精锻委员会副主任,湖北省塑性工程学会理事长。一直从事材料成形技术与自动化加工装备、材料成形过程性能控制与模拟计算等方面的研究。近5年,在国内外重要学术刊物上发表论文近70余篇,其中SCI收录40余篇;撰写专著教材2本;获授权专利13项(含国际4项)、获软件著作权1项;制定机械行业标准4项;获国家技术发明二等奖1项(排名第1)、中国机械工业科学技术一等奖1项(排名第1)。
引用本文:    
丁华平,龚攀,姚可夫,邓磊,金俊松,王新云. 非晶合金零件成形技术研究进展[J]. 材料导报, 2020, 34(3): 3133-3141.
DING Huaping,GONG Pan,YAO Kefu,DENG Lei,JIN Junsong,WANG Xinyun. The Forming of Amorphous Alloy Parts: a Technological Review. Materials Reports, 2020, 34(3): 3133-3141.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030258  或          http://www.mater-rep.com/CN/Y2020/V34/I3/3133
1 Klement W, Willens R H, Duwez P.Nature, 1960, 187(4740),869.
2 Chen H S, Krause J T, Coleman E.Journal of Non-Crystalline Solids, 1975, 18(2),157.
3 Chen M.NPG Asia Materials, 2011, 3(9),82.
4 Wang W H. Physics ,2011,40(11),701(in Chinese).
汪卫华.物理, 2011, 40(11),701.
5 Li H F, Zheng Y F.Acta Biomaterialia, 2016, 36,1.
6 Khan M M, Nemati A, Rahman Z U, et al.Critical Reviews in Solid State & Material Sciences, 2018, 43(3),1.
7 Aqida S N, Shah L H, Naher S, et al.Comprehensive Materials Proces-sing, 2014, 47(1),69.
8 Jund P, Caprion D, Jullien R. Physical Review Letters, 1997, 79(1),91.
9 Inoue A. Materials Transactions, JIM, 1995, 36(7),866.
10 Hofmann D C, Andersen L M, Kolodziejska J, et al.Advanced Enginee-ring Materials, 2017, 19(1).
11 Hofmann D C, Polit-Casillas R, Roberts S N, et al.Scientific Reports, 2016, 6,37773.
12 Kong L X, She F H, Gao W M, et al.Journal of Materials Processing Technology, 2007, 201(1),629.
13 Yang Y J, Liu W C, Guo D, et al.Special Casting & Nonferrous Alloys,2017(12),1354(in Chinese).
杨玉婧, 刘文超, 郭栋,等.特种铸造及有色合金, 2017(12),1354.
14 Ramasamy P, Szabo A, Borzel S, et al.Scientific Reports, 2016, 6,35258.
15 Liu L, Zhang T, Liu Z, et al.Materials, 2018, 11(11), 2338.
[1] 陈国庆, 张戈, 尹乾兴, 张秉刚, 冯吉才. TiAl合金焊接裂纹控制研究进展[J]. 材料导报, 2020, 34(5): 5115-5119.
[2] 李卿, 赵国瑞, 马文有, 余红雅, 刘敏. 选区激光熔化成形多孔Ti6Al4V (ELI)合金的拉伸性能及断裂机制[J]. 材料导报, 2020, 34(4): 4073-4076.
[3] 李福贵, 雷玉成, 李天庆, 朱强, 张雪宁. 奥氏体不锈钢焊接接头辐照偏析和辐照硬化的研究[J]. 材料导报, 2020, 34(4): 4098-4102.
[4] 张国忠,李艳辉,吴立成,张伟. Fe基纳米晶软磁合金退火脆性的研究进展[J]. 材料导报, 2020, 34(3): 3165-3171.
[5] 王官充, 冯拉俊. Er含量对FeSiB合金结构演变的影响[J]. 材料导报, 2020, 34(2): 2088-2092.
[6] 崔铮. 柔性混合电子——基于印刷加工实现柔性电子制造[J]. 材料导报, 2020, 34(1): 1009-1013.
[7] 陈爱华, 俞坚钢, 陈国平, 唐诤溱, 王鹏举. 合金化元素对铜基块状非晶合金性能影响的研究进展[J]. 材料导报, 2019, 33(Z2): 415-418.
[8] 陈宇豪, 薛松柏, 王博, 韩翼龙. 汽车轻量化焊接技术发展现状与未来[J]. 材料导报, 2019, 33(Z2): 431-440.
[9] 季昌国, 余超. 汽轮机焊接隔板坡口角度对相控阵超声回波信号影响的定量研究[J]. 材料导报, 2019, 33(Z2): 441-446.
[10] 温俊霞, 曹睿, 李骏鹏, 曾茂燕, 陈璟. 球墨铸铁表面CMT堆焊H08Mn2Si焊丝的研究[J]. 材料导报, 2019, 33(Z2): 447-451.
[11] 郭纯, 马明亮, 胡瑞章, 杨拓宇, 陈丰. 电弧增材制造舰船用高强钢10CrNi3MoV的组织及性能[J]. 材料导报, 2019, 33(Z2): 455-459.
[12] 张哲轩, 周再峰, 山泉, 李祖来, 蒋业华, 张飞. 表面钨合金化对高铬铸铁组织和硬度的影响[J]. 材料导报, 2019, 33(z1): 362-365.
[13] 李今朝, 陈亮, 黄腾飞, 匡艳军, 邱振生. 关于反应堆压力容器新型用钢SA-508Gr.4N的研究进展[J]. 材料导报, 2019, 33(z1): 382-385.
[14] 陈涛, 薛松柏, 孙子建, 翟培卓, 陈卫中, 郭佩佩. CO2气体保护焊短路过渡控制技术的研究现状与展望[J]. 材料导报, 2019, 33(9): 1431-1442.
[15] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed