Please wait a minute...
材料导报  2020, Vol. 34 Issue (1): 1009-1013    https://doi.org/10.11896/cldb.19110099
  |
柔性混合电子——基于印刷加工实现柔性电子制造
崔铮
中国科学院苏州纳米技术与纳米仿生研究所 苏州 215123
Flexible Hybrid Electronics: Manufacturing Flexible Electronics by Printing Technique 
CUI Zheng
Institute of Nanotech and Nanobionics,Chinese Academy of Sciences,Suzhou 215123,China
下载:  全 文 ( PDF ) ( 5266KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以折叠式手机的商业化为标志,2019年被称为柔性电子“元年”。但除了成就折叠手机的柔性显示外,更广义的柔性电子产品并没有大量出现。其中一个重要原因是我们所熟悉的功能性电子系统并没有全部实现柔性化,例如,任何电子系统中都不可或缺的晶体管与集成电路并没有全柔性的替代方案。完成复杂的电子电路功能还离不开非柔性的集成电路芯片(IC)与印刷电路板(PCB)。为了克服这一短板,需要将成熟的集成电路芯片技术引入柔性电子系统。在实现集成电路芯片与柔性系统结合的两种技术路线——超薄芯片转移与柔性混合电子——中,基于印刷技术的柔性混合电子路线具有工艺简单、成本低、实用性强及易于工业化等一系列优点。本文介绍了柔性混合电子的技术路线,总结了柔性电子印刷加工所需墨水材料和印刷工艺方面的研究进展,并回顾了笔者团队过去10年中在印刷电子领域的研发实践与成果。本文旨在证明印刷加工能够创造更贴近应用、更具市场竞争力的柔性电子产品,是现阶段推进柔性电子产业化的有效技术手段。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔铮
关键词:  柔性电子  印刷电路  微纳米加工技术  打印技术  增材制造    
Abstract: The commercialization of foldable mobile phones makes the year of 2019 been regarded as the starting year of flexible electronics. However, apart from the flexible displays which contribute to the foldable phones, flexible electronics products in a broader sense still remains unrea-lized. One of the key reasons is not all the functional electronic components have been successively flexibilized in commercial level. For example, there are still no flexible alternatives for the transistors and integrated circuits (ICs) which are indispensable to any electronic system. And the complete functions of an electronic system still rely on rigid IC chips and printed circuit boards (PCBs). To overcome this barrier, no other choice is practicable except fabricating flexible electronic systems that integrate traditional rigid ICs. There are currently two approaches to achieving this integration — transferring thin silicon chips onto a flexible substrate; or the so called “flexible hybrid electronics” — in which the latter is based on printing technique and is of simplicity, low cost and high throughput potential. Herein, I sketch out the technical approach of flexible hybrid electronics, and give a summary of the research progress of the ink materials and printing process for flexible electronics printing manufacturing. In addition, I also present a retrospective report showing the achievements of the author's Printable Electronics Research Center in the last 10 years in the area of printed electronics. This paper intends to prove that we can create flexible electronic products closer to practical applications and more competitive through printing conductive interconnects on flexible substrates, which can be an effective methodology, at the current technology level, to greatly advance the commercialization of flexible electronics.
Key words:  flexible electronics    printed circuit    micro and nanofabrication    printing technique    additive manufacturing
               出版日期:  2020-01-10      发布日期:  2020-01-15
ZTFLH:  TB34  
通讯作者:  zcui2009@sinano.ac.cn   
作者简介:  崔铮,1988年获电子工程博士学位,1989—2009年先后在英国剑桥大学与英国卢瑟福国家实验室从事微纳米加工技术与应用科研工作。2009年9月入选国家“千人计划”特聘专家,10月全职加入中科院苏州纳米所,创建印刷电子技术研究中心。中心在过去10年中从事科研方向包括有机无机电子墨水制备、印刷电子工艺、印刷太阳能电池、印刷薄膜晶体管、印刷有机与量子点发光、印刷柔性可穿戴可拉伸电子、有机电子封装等。已发表学术论文250余篇,在微纳米加工技术与印刷电子技术领域出版中英文专著8部。作为第一发明人的“图形化柔性透明导电膜及其制法”专利获第16届中国专利金奖。
引用本文:    
崔铮. 柔性混合电子——基于印刷加工实现柔性电子制造[J]. 材料导报, 2020, 34(1): 1009-1013.
CUI Zheng. Flexible Hybrid Electronics: Manufacturing Flexible Electronics by Printing Technique . Materials Reports, 2020, 34(1): 1009-1013.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110099  或          http://www.mater-rep.com/CN/Y2020/V34/I1/1009
1 William S, Wong, Alberto Salleo, ed. Flexible electronics: materials and applications, Springer, USA, 2009.
2 Boutry C M, Nguyen A, Lawal Q O, et al. Advanced Materials, 2015, 27(43), 6954.
3 Yao Y, Dong H, Hu W. Advanced Materials, 2016, 28(22), 4513.
4 Li T, Luo H, Qin L, et al. Small, 2016, 12(36), 5042.
5 Trung T Q, Lee N E. Advanced Materials, 2017, 29(3), 1603167.
6 Liu Y, He K, Chen G, et al. Chemical Reviews, 2017, 117(20),12893.
7 Long Y Z, Yu M, Sun B, et al.Chemical Society Reviews, 2012, 41(12), 4560.
8 Li R W, Liu G, ed. Flexible and stretchable electronics: materials, design, and devices, Pan Stanford Publishing Pte Ltd, Singapore, 2019
9 Shen G Z, Fan Z Y, ed. Flexible electronics:from materials to devices, World Scientific Publishing Co Pte Ltd, Singapore, 2016.
10 Sun Y, Rogers J A. Advanced Materials, 2007, 19(15), 1897.
11 Kim D H, Kim Y S, Wu J, et al. Advanced Materials, 2009, 21(36), 3703.
12 Cui Z. Nanofabrication: principles, capabilities and limits (2ed), Sprin-ger, USA, 2016.
13 Menard E, Lee K J, Khang D Y, et al. Applied Physics Letters, 2004, 84(26), 5398.
14 Cui Z, Qiu S, Zhou C, et al. Printed electronics: materials, technologies and applications, John Wiley & Sons, USA, 2016.
15 Kamyshny A, Magdassi S. Small, 2014, 10(17), 3515.
16 Yuan W, Wu X, Gu W, et al.Journal of Semiconductors, 2018, 39(1), 015002.
17 Zhong T, Jin N, Yuan W, et al. Materials, 2019, 12(18),3036.
18 Wu X, Shao S, Chen Z, et al. Nanotechnology, 2017, 28(3), 035203.
19 Huang Q, Zhu Y. Advanced Materials Technologies, 2019, 4(5), 1800546.
20 Cui Z,Gao Y. SID Symposium Digest of Technical Papers,2015, 46, 398.
[1] 李卿, 赵国瑞, 马文有, 余红雅, 刘敏. 选区激光熔化成形多孔Ti6Al4V (ELI)合金的拉伸性能及断裂机制[J]. 材料导报, 2020, 34(4): 4073-4076.
[2] 丁华平,龚攀,姚可夫,邓磊,金俊松,王新云. 非晶合金零件成形技术研究进展[J]. 材料导报, 2020, 34(3): 3133-3141.
[3] 林进义, 安翔, 白鲁冰, 徐曼, 韦传新, 解令海, 林宗琼, 黄维. 柔性高分子半导体:力学性能和设计策略[J]. 材料导报, 2020, 34(1): 1001-1008.
[4] 陆骐峰,孙富钦,王子豪,张珽. 柔性人工突触:面向智能人机交互界面和高效率神经网络计算的基础器件[J]. 材料导报, 2020, 34(1): 1022-1049.
[5] 骆泽纬,田希悦,范基辰,杨鑫,樊天意,王超伦,吴幸,褚君浩. 智能时代下的新型柔性压阻传感器[J]. 材料导报, 2020, 34(1): 1069-1079.
[6] 马飞祥,丁晨,凌忠文,袁伟,孟秀清,苏文明,崔铮. 导电织物制备方法及应用研究进展[J]. 材料导报, 2020, 34(1): 1114-1125.
[7] 宋江,王腾蛟,冯涛,CHAN Siew Yin,荣帆,李鹏,黄维. 柔性电子在糖尿病诊断、治疗及护理中的应用综述[J]. 材料导报, 2020, 34(1): 1126-1134.
[8] 李一帆,刘宇航,孙晋蒙,吴乾鑫,龚昕,杜洪方,艾伟,黄维. 柔性储能器件的电极设计研究进展[J]. 材料导报, 2020, 34(1): 1177-1186.
[9] 郭纯, 马明亮, 胡瑞章, 杨拓宇, 陈丰. 电弧增材制造舰船用高强钢10CrNi3MoV的组织及性能[J]. 材料导报, 2019, 33(Z2): 455-459.
[10] 产玉飞, 陈长军, 张敏. 金属增材制造过程的在线监测研究综述[J]. 材料导报, 2019, 33(17): 2839-2846.
[11] 王瑞平,袁长龙,陶劲松. 纳米纤维素改性及其在柔性电子方面的应用[J]. 材料导报, 2019, 33(17): 2949-2957.
[12] 段伟, 赵哲, 吉红伟, 卢洋, 陈嘉星, 倪培燊, 邓欣, 刘建业, 戚文军, 牛留辉, 高文华. 粉体性能及选区激光熔化打印工艺对AlSi10Mg合金致密化行为的影响[J]. 材料导报, 2019, 33(10): 1685-1690.
[13] 余淑荣, 程能弟, 黄健康, 李楠, 樊丁. 旁路耦合微束等离子弧焊增材制造的热过程[J]. 材料导报, 2019, 33(1): 162-166.
[14] 康学良, 董世运, 汪宏斌, 门平, 徐滨士, 闫世兴. 基于磁巴克豪森原理的铁磁材料各向异性检测技术综述[J]. 材料导报, 2019, 33(1): 183-190.
[15] 耿汝伟, 杜军, 魏正英, 魏培. 金属增材制造中微观组织相场法模拟研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1145-1150.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed