Please wait a minute...
材料导报  2020, Vol. 34 Issue (1): 1126-1134    https://doi.org/10.11896/cldb.19100178
  |
柔性电子在糖尿病诊断、治疗及护理中的应用综述
宋江1,,王腾蛟1,2,,冯涛1,2,CHAN Siew Yin1,2,荣帆1,李鹏1,2,黄维1,2,
1 西北工业大学柔性电子研究院,西安 710072
2 西安生物医学材料与工程研究院,西安 710072
Applying Flexible Electronics in the Diagnosis, Treatment and Nursing Care for Diabetes Mellitus: a Review
SONG Jiang1,,WANG Tengjiao1,2,,FENG Tao1,2,CHAN Siew Yin1,2,RONG Fan1,LI Peng1,2,HUANG Wei1,2,
1 Xi'an Institute of Flexible Electronics,Northwestern Polytechnical University,Xi'an 710072,China
2 Xi'an Institute of Biomedical Materials and Engineering,Northwestern Polytechnical University,Xi'an 710072,China
下载:  全 文 ( PDF ) ( 8068KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 糖尿病是生活中常见的一种慢性病,其特征是血液中存在高浓度的葡萄糖。血糖浓度过高会导致代谢紊乱,并衍生一系列的并发症,严重降低了患者的生活质量,病情发展严重还会导致残疾甚至死亡。随着智能终端和移动互联网的普及,柔性电子产品因为具有质量轻、可拉伸和延展性好等独特的优势,近年来逐渐进入人们的日常生活,并被应用在医疗设施中,尤其是在对慢性疾病如糖尿病的诊断、治疗和护理等方面展现出极大的应用潜力。
糖尿病患者需要定期检测血液中的葡萄糖水平,长期使用相关药物进行治疗与控制,由糖尿病引起的各种并发症也需要长期进行监控和护理。传统的糖尿病诊断方法形式单一,不能连续、实时地检测血液中的葡萄糖水平,会对患者造成创伤或延误患者最佳治疗时间。此外,对糖尿病患者的后期护理机制不健全,加上目前的护理设备相对落后,导致患者病情迅速发展。
柔性电子通过结合传感器技术集成为可穿戴柔性电子设备,能够连续、实时地以无创或微创的形式来检测体内葡萄糖水平。可穿戴柔性电子设备通过集成给药装置和无线通信设备,可以智能化地控制药物剂量以及给药治疗,并对糖尿病患者进行健康监测和运动辅助。因此,可穿戴柔性电子设备的出现为糖尿病的诊断、治疗和护理提供了新的途径,成为糖尿病个体化管理最理想的平台。
本文综述了近几年来可穿戴柔性电子设备在糖尿病诊断、治疗和护理中的应用和进展,分析了可穿戴柔性电子设备发展过程中所面临的挑战以及潜在的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋江
王腾蛟
冯涛
CHAN Siew Yin
荣帆
李鹏
黄维
关键词:  柔性电子  可穿戴设备  糖尿病  血糖检测  健康护理  生物传感    
Abstract: Diabetes is a common chronic metabolic disease characterized by high glucose concentrations in the blood, adversely affecting the health and diminishing the qualities of life of patients. In addition, diabetes can also cause a series of complications, rendering it difficult to restore the health of patients with medication alone. The development of these complications may lead to disability or even death. With the rise of artificial intelligence and Internet of Things, flexible electronics has been gradually employed for the treatment of diabetes in recent years due to its unique advantages such as being lightweight, stretchable, or bendable.
To treat and control the development of diabetes, patients need to regularly detect glucose content in the blood and take medication over a long term period. Traditional methods of diagnosing diabetes are unable to detect the glucose level in the blood continuously and in real time, causing trauma and delaying the best treatment time for patients. Due to inadequate nursing mechanism and backward nursing equipment, the conditions of patients may worsen rapidly.
Flexible electronics are integrated into wearable flexible electronic devices through integration with sensing technologies. These equipment can be directly worn on the body, and are able to detect the glucose level in the body continuously and in real time through non-invasive or minimally invasive detection methods. By integrating drug delivery devices and wireless communication equipment, the setup can intelligently control drug dosage, render drug treatment, as well as carry out real-time health monitoring and exercise assistance for diabetic patients. Therefore, wearable flexible electronic devices provide new ways for diagnosis, treatment, and nursing care of diabetes, and has become the most ideal platform for individualized management of diabetes.
This paper reviews the applications of flexible wearable devices in the diagnosis, treatment, and nursing care for diabetes in recent years. The challenges faced in the development of flexible wearable devices are also discussed. Progress in the area of flexible wearable devices may potentially alleviate problems faced by diabetic patients, thereby improving their quality of life.
Key words:  flexible electronics    wearable devices    diabetes    glucose detection    health care    biosensing
                    发布日期:  2020-01-15
ZTFLH:  TN04  
基金资助: 国家重点研发计划(2018YFC1105402);国家自然科学基金面上项目(21875189);陕西省创新人才推进计划(2019KJXX-064);陕西省自然科学基础研究计划青年项目(2019JQ-157);中央高校基本科研业务费(G2018KY0305;G2018KY0307)
通讯作者:  iamtjwang@nwpu.edu.cn; iamwhuang@nwpu.edu.cn   
作者简介:  宋江,2019年毕业于中国石油大学(华东),获光电信息科学与工程学士学位,现为西北工业大学柔性电子研究院硕士研究生。目前主要研究方向为柔性生物电子器件。
王腾蛟,西北工业大学柔性电子研究院(西安生物医学材料与工程研究院)副教授。2010年于北京化工大学获得高分子科学与工程学士学位,2016年于日本大阪大学获得高分子材料博士学位,2016-2018年在美国阿肯色大学进行博士后研究工作。主要从事聚合物生物医学材料的制备和应用,科研经历涉足于高分子化学、纳米药物和有机化学等领域。王腾蛟副教授在抗菌、抗癌、伤口愈合等方面已经累计发表包括Polymer Chemistry,Langmuir,Macromolecular Bioscience等SCI收录论文13篇。
黄维,中国科学院院士,俄罗斯科学院外籍院士、名誉博士,亚太材料科学院院士、东盟工程与技术科学院外籍院士、巴基斯坦科学院院士,西北工业大学常务副校长,教授、博导,有机电子学/柔性电子学家。教育部“长江学者”特聘教授,国家杰出青年科学基金获得者,“千人计划”(溯及既往)国家特聘专家,科技部“973”项目首席科学家。亚太地区工程组织联合会(FEIAP)主席、英国谢菲尔德大学名誉博士、英国皇家化学学会会士、美国光学学会会士、国际光学工程学会会士,中国科协常委,中国化学会副理事长,中国化工学会副理事长,Research、npj Flexible Electronics和Advanced Materials等国际权威学术杂志主编或(顾问)编委。长期从事有机光电、柔性电子等相关领域的研究,并取得了大量系统性、创新性的研究成果,以第一或通讯作者身份在Nature、Nature Materials、Nature Photonics、Nature Nanotechnology、Nature Electronics、Nature Communications、Advanced Materials、Journal of the American Chemical Society等SCI学术期刊发表研究论文760余篇,H因子为121,国际同行引用70 000余次,是材料科学与化学领域全球高被引学者,获授权美国、新加坡和中国等国发明专利380余项,出版了《有机电子学》《生物光电子学》《有机薄膜晶体管材料器件和应用》《OLED显示技术》等学术专著。曾获国家自然科学奖二等奖和何梁何利基金科技进步奖等奖励,成果入围中国高等学校十大科技进展。
引用本文:    
宋江,王腾蛟,冯涛,CHAN Siew Yin,荣帆,李鹏,黄维. 柔性电子在糖尿病诊断、治疗及护理中的应用综述[J]. 材料导报, 2020, 34(1): 1126-1134.
SONG Jiang,WANG Tengjiao,FENG Tao,CHAN Siew Yin,RONG Fan,LI Peng,HUANG Wei. Applying Flexible Electronics in the Diagnosis, Treatment and Nursing Care for Diabetes Mellitus: a Review. Materials Reports, 2020, 34(1): 1126-1134.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100178  或          http://www.mater-rep.com/CN/Y2020/V34/I1/1126
1 Guariguata L, Whiting D R, Hambleton I, et al.Diabetes Research and Clinical Practice, 2014, 103(2), 137.
2 Whiting D R, Guariguata L, Weil C, et al.Diabetes Research and Clinical Practice, 2011, 94(3), 311.
3 Cho N H, Shaw J E, Karuranga S, et al. Diabetes Research and Clinical Practice, 2018, 138, 271.
4 Hippisley-Cox J, Coupland C.British Medical Journal, 2016, 352, i1450.
5 Forbes J M, Cooper M E.Physiological Reviews, 2013, 93, 137.
6 Li L, Chen Z, Hao M, et al.Nano Letters, 2019, 19(8), 5544.
7 Bandodkar A J, Wang J. Trends in Biotechnology, 2014, 32(7), 363.
8 Gao W, Emaminejad S, Nyein H Y Y, et al.Nature, 2016, 529(7587), 509.
9 Yang Y, Gao W.Chemical Society Reviews, 2019, 48(6), 1465.
10 Hu Y, Zhao T, Zhu P, et al.Nano Research, 2018, 11(4), 1938.
11 Wang Y, Zhang X, Luo Z, et al.Nanoscale, 2014, 6(21), 12340.
12 Kyi M, Colman P G, Rowan L M, et al.Medical Journal of Australia, 2019, 211(4), 175.
13 Ratnayake C, Weerasekara N D, Suranimala D H, et al.Ceylon Medical Journal, 2018, 63(4), 180.
14 Ribet F, Stemme G, Roxhed N, et al.Biomedical Microdevices, 2018, 20(4), 101.
15 Kim J, Campbell A S, Wang J, et al.Talanta, 2018, 177, 163.
16 Elsherif M, Hassan M U, Yetisen A K, et al.Biosensors and Bioelectro-nics, 2019, 137, 25.
17 Chen Y H, Lu S Y, Zhang S S, et al.Science Advances, 2017, 3(12), e1701629.
18 Villiger M, Stoop R, Vetsch T, et al.European Journal of Clinical Nutrition, 2018, 72(1), 69.
19 Moyer J, Wilson D, Finkelshtein I, et al. Diabetes Technology & Therapeutics, 2011, 14(5), 398.
20 Karpova E V, Shcherbacheva E V, Galushin A A, et al.Analytical Che-mistry, 2019, 91(6), 3778.
21 Zilberstein G, Zilberstein R, Maor U, et al.Electrophoresis, 2018, 39(18), 2344.
22 Lin Y, Bariya M, Nyein H Y Y, et al.Advanced Functional Materials, 2019, 29(33), 1902521.
23 Gordon J, McEwan P, Hurst M, et al.Diabetes Therapy, 2016, 7(4), 825.
24 Yoon H J, Jun D H, Yang J H, et al.Sensors and Actuators B-Chemical, 2011, 157(1), 310.
25 Makisimovich N, Vorotyntsev V, Nikitina N, et al.Sensors and Actuators B-Chemical, 1996, 36(1-3), 419.
26 Liu F, Chu X, Dong Y, et al.Sensors and Actuators B-Chemical, 2013, 188, 469.
27 Kumagai AK, Glasgow BJ, Pardridge WM, et al.Investigative Ophthalmology and Visual Science, 1994, 35, 2887.
28 Turner H C, Alvarez L J, Bildin V N, et al. Current Eye Research, 2000, 21(843), 50.
29 Sen D K, Sarin G S. The British Journal of Ophthalmology, 1980, 64(9), 693.
30 March W F, Smith F E, Herbrechtsmeier P, et al.Diabetes, 2001, 50, A125.
31 Iguchi S, Kudo H, Saito T, et al.Biomedical Microdevices, 2007, 9(4), 603.
32 Lin Y R, Hung C C, Chiu H Y, et al.Sensors-Basel, 2018, 18(10), 3208.
33 Lakowicz J R, Reece E A, Badugu R, et al.Journal of Biomedical Optics, 2018, 23(5), 057005.
34 Yao H, Shum A J, Cowan M, et al.Biosensors and Bioelectronics, 2011, 26(7), 3290.
35 Gordon J, McEwan P, Hurst M, et al.Diabetes Therapy, 2016, 7(4), 825.
36 Jendle J, Fang X, Cao Y, et al.Journal of The American Society Hypertension, 2018, 12(5), 346.
37 Cappon G, Vettoretti M, Sparacino G, et al.Diabetes and Metabolism Journal, 2019, 43(4), 383.
38 Liu H T, Gao Y. Experimental and Therapeutic Medicine, 2019, DOI: 10.3892/etm.2019.7821.
39 Berian J, Bravo I, Gardel A, et al.Electronics, 2019, 8(6), 612.
40 Luo Z, Sun W, Fang J, et al.Advanced Healthcare Materials, 2019, 8(3), 1801054.
41 Lee H, Song C, Baik S, et al. Advanced Drug Delivery Reviews, 2018, 127, 35.
42 Prausnitz M R.Advanced Drug Delivery Reviews, 2004, 56, 581.
43 Lee H, Choi T K, Lee Y B, et al.Nature Nanotechnology, 2016, 11(6), 566.
44 Bakker K, Apelqvist J, Schaper N C, et al.Diabetes-Metabolism Research and Reviews, 2012, 28, 225.
45 Kamoun E A, Kenawy E R S. Chen X. Journal of Advanced Research, 2017, 8(3), 217.
46 Li S, Dong S, Xu W, et al.Advanced Science, 2018, 5(5), 1700527.
47 Zhao Y, Li Z, Song S, et al.Advanced Functional Materials, 2019,29(31), 1901474.
48 Farandos N M, Yetisen A K, Monteiro M J, et al.Advanced Healthcare Materials, 2015, 4, 792.
49 Bussan K A, Robertson D M.Journal of Diabetes and Its Complications, 2019, 33(1), 75.
50 Tseng R C, Chen C C, Hsu S M, et al.Sensors-Basel, 2018, 18(8), 2651.
51 Chu M X, Miyajima K, Takahashi D, et al.Talanta, 2011, 83(3), 960.
52 Hong Y J, Lee H, Kim J, et al.Advanced Functional Materials, 2018, 28(47), 1805754.
53 Lee H, Song C, Hong Y S, et al.Science Advances, 2017, 3(3), e1601314.
54 Razak A H, Zayegh A, Begg R K, et al.Sensors-Basel, 2012, 12(7), 9884.
55 Watanabe A, Noguchi H, Oe M, et al.Journal of Advanced Research, 2017, DOI:10.1155/2017/5350616.
56 Rajala S, Mattila R, Kaartinen I, et al.IEEE Sensors Journal, 2017, 17(20), 6798.
[1] 林进义,安翔,白鲁冰,徐曼,韦传新,解令海,林宗琼,黄维. 柔性高分子半导体:力学性能和设计策略[J]. 材料导报, 2020, 34(1): 1001-1008.
[2] 崔铮. 柔性混合电子——基于印刷加工实现柔性电子制造[J]. 材料导报, 2020, 34(1): 1009-1013.
[3] 陆骐峰,孙富钦,王子豪,张珽. 柔性人工突触:面向智能人机交互界面和高效率神经网络计算的基础器件[J]. 材料导报, 2020, 34(1): 1022-1049.
[4] 骆泽纬,田希悦,范基辰,杨鑫,樊天意,王超伦,吴幸,褚君浩. 智能时代下的新型柔性压阻传感器[J]. 材料导报, 2020, 34(1): 1069-1079.
[5] 马飞祥,丁晨,凌忠文,袁伟,孟秀清,苏文明,崔铮. 导电织物制备方法及应用研究进展[J]. 材料导报, 2020, 34(1): 1114-1125.
[6] 李一帆,刘宇航,孙晋蒙,吴乾鑫,龚昕,杜洪方,艾伟,黄维. 柔性储能器件的电极设计研究进展[J]. 材料导报, 2020, 34(1): 1177-1186.
[7] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[8] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[9] 冯晓倩, 顾文, 张霞, 蒋浩. 基于有机薄膜晶体管与有机电化学晶体管的生物传感器研究进展[J]. 材料导报, 2019, 33(7): 1243-1250.
[10] 王瑞平,袁长龙,陶劲松. 纳米纤维素改性及其在柔性电子方面的应用[J]. 材料导报, 2019, 33(17): 2949-2957.
[11] 张仲达, 杨文芳. 层层自组装技术的研究进展及应用情况*[J]. 《材料导报》期刊社, 2017, 31(5): 40-45.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed