Please wait a minute...
材料导报  2020, Vol. 34 Issue (1): 1114-1125    https://doi.org/10.11896/cldb.19110040
  |
导电织物制备方法及应用研究进展
马飞祥1,2,丁晨1,凌忠文3,袁伟1,,孟秀清2,苏文明1,崔铮1,
1 中国科学院苏州纳米技术与纳米仿生研究所,苏州 215123
2 浙江师范大学省固态光电重点实验室,金华 321004
3 武汉联影智融医疗科技有限公司,武汉 430000
Research Progress on Preparation and Application of Conductive Fabrics
MA Feixiang1,2,DING Chen1,LING Zhongwen3,YUAN Wei1,,Meng Xiuqing2,SU Wenming1,CUI Zheng1,
1 Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences,Suzhou 215123,China
2 Zhejiang Provincial Key Laboratory of Solid State Optoelectronic Devices,Zhejiang Normal University,Jinhua 321004,China
3 Wuhan United Imaging Zhirong Medical Technology Co.,Ltd.,Wuhan 430000,China
下载:  全 文 ( PDF ) ( 7407KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 织物面料由于其优异的柔韧性及透气吸水特性,越来越多地被选择为柔性电子器件的衬底材料,并被广泛应用于可穿戴电子领域。其中如何实现普通织物具有导电性,并满足弯曲、拉伸,甚至洗涤状态下仍然保持电学稳定性,是各种织物基可穿戴电子器件的基础。本文首先综述了当前制备导电织物的各种方法,并依次展开论述,总结各方法的优缺点,指出导电织物研究中亟待解决的问题,主要包括实用性、舒适性、规模化、低成本等;最后对导电织物在柔性可穿戴电子中的应用进行了介绍,并对其未来发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马飞祥
丁晨
凌忠文
袁伟
孟秀清
苏文明
崔铮
关键词:  导电织物  柔性电子  可穿戴电子  智能服装  导电聚合物    
Abstract: Due to the excellent flexibility, breathability and water absorption, more and more fabrics are selected as substrates to prepare flexible electronic devices, which are widely used in the field of wearable electronics. However, it is subject to critical challenges to realize the conductivity of common fabrics due to the high porosity and roughness of fabrics. Furthermore, these conductive fabrics need high conductivity and the capability of maintaining excellent electrical performance under larger strain and repeated washing, which is the basis for practical application. In this paper, the methods for fabrication of conductive fabrics are reviewed, and then the advantages and disadvantages of each method are summarized. Finally, the application of conductive fabric in flexible wearable electronics is introduced, and its future development trend is also forecasted.
Key words:  conductive fabric    flexible electronics    wearable electronics    smart clothing    conductive polymer
                    发布日期:  2020-01-15
ZTFLH:  TB34  
基金资助: 国家重点研发计划资助(2017YFE0112000);国家自然科学基金(51603227;51603228)
通讯作者:  wyuan2014@sinano.ac.cn; zcui2009@sinano.ac.cn   
作者简介:  马飞祥,2018年6月毕业于河南科技大学,获得理学学士学位,现为浙江师范大学与中科院苏州纳米所联合培养硕士生,目前主要研究领域为透气织物电极的设计制备及其应用。
袁伟,中国科学院苏州纳米技术与纳米仿生研究所印刷电子学部助理研究员。2014年毕业于苏州大学,取得纺织工程专业博士学位,同年加入中科院苏州纳米所印刷电子学部进行博士后研究,2017年博士后出站后留所工作至今,研究方向为面向纺织面料基多功能可穿戴器件的研究,设计开发具有柔性可拉伸、耐揉搓、可水洗的智能穿戴器件及系统,目前已在ACS Applied Materials & Interfaces、Langmuir、Journal of Semiconductor、RSC Advances等学术期刊发表第一作者及通讯作者学术论文10余篇,撰写英文章节3章,获授权发明专利5项,目前主持国家重点研发计划子课题、国家自然科学基金、企业横向合作项目等6项。
崔铮, 1988年获电子工程博士学位,1989—2009年先后在英国剑桥大学与英国卢瑟福国家实验室从事微纳米加工技术与应用科研工作。2009年9月入选国家“千人计划”特聘专家,10月全职加入中科院苏州纳米所,创建印刷电子技术研究中心。中心在过去10年中从事科研方向包括有机无机电子墨水制备、印刷电子工艺、印刷太阳能电池、印刷薄膜晶体管、印刷有机与量子点发光、印刷柔性可穿戴可拉伸电子、有机电子封装等。已发表学术论文250余篇,在微纳米加工技术与印刷电子技术领域出版中英文专著8部。作为第一发明人的“图形化柔性透明导电膜及其制法”专利获第16届中国专利金奖。
引用本文:    
马飞祥,丁晨,凌忠文,袁伟,孟秀清,苏文明,崔铮. 导电织物制备方法及应用研究进展[J]. 材料导报, 2020, 34(1): 1114-1125.
MA Feixiang,DING Chen,LING Zhongwen,YUAN Wei,Meng Xiuqing,SU Wenming,CUI Zheng. Research Progress on Preparation and Application of Conductive Fabrics. Materials Reports, 2020, 34(1): 1114-1125.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110040  或          http://www.mater-rep.com/CN/Y2020/V34/I1/1114
1 Cottet D, Grzyb J, Kirstein T, et al.IEEE Transactions on Advanced Pac-kaging, 2003, 26(2), 182.
2 Barjasteh E, Sutanto C, Nepal D.Langmuir, 2019, 35(6), 2261.
3 Zheng L, Su X, Lai X, et al.Materials Letters, 2019.
4 Ma R, Lee J, Choi D, et al.Nano Letters, 2014, 14(4), 1944.
5 Zhong W, Liu C, Xiang C, et al.ACS Applied Materials & Interfaces, 2017, 9(48), 42058.
6 Liu K, Zhou Z, Yan X, et al.Polymers, 2019, 11(7), 1120.
7 Sun C, Li X, Zhao J, et al.Electrochimica Acta, 2019, 317, 42.
8 Ding Y, Invernale M A, Sotzing G A.ACS Applied Materials & Interfaces, 2010, 2(6), 1588.
9 Hu L, Pasta M, La Mantia F, et al.Nano Letters, 2010, 10(2), 708.
10 Wu Q, Hu J.Composites Part B: Engineering, 2016, 107, 59.
11 Reyes-Reyes M, Cruz-Cruz I, López-Sandoval R.The Journal of Physical Chemistry C, 2010, 114(47), 20220.
12 Amba Sankar K N, Mohanta K.American Institute of Physics Conference Series, 2016, 1731,120019.
13 Xia Y, Sun K, Ouyang J.Advanced Materials, 2012, 24(18), 2436.
14 Yeon C, Kim G, Lim J W, et al.RSC Advances, 2017, 7(10), 5888.
15 Mostafalu P, Akbari M, Alberti K A, et al.Microsystems & Nanoenginee-ring, 2016, 2, 16039.
16 Gao S, Wang F, Tao R.Electroplating & Finishing, 2016, 35(21), 1116 (in Chinese).
高嵩, 王锋, 陶睿.电镀与涂饰, 2016, 35(21), 1116.
17 Zhu H Y, Zhao Y P, Chen C, et al. Surface Technology, 2015, 44(2), 73 (in Chinese).
朱航悦, 赵亚萍, 陈琛, 等.表面技术, 2015, 44(2), 73.
18 Zhou Z Y, Zhao Y P, Cai Z S.Dyeing and Finishing, 2009, 35(5), 1 (in Chinese).
周兆懿, 赵亚萍, 蔡再生.印染, 2009, 35(5), 1.
19 Lv J, Zhou P, Zhang L, et al.Chemical Engineering Journal, 2019, 361, 897.
20 Lin T, Wang L, Wang X, et al.Thin Solid Films, 2005, 479(1-2), 77.
21 Xu J, Wang D, Fan L, et al.Organic Electronics, 2015, 26, 292.
22 Tissera N D, Wijesena R N, Rathnayake S, et al.Carbohydrate Polymers, 2018, 186, 35.
23 Yu Y, Yan C, Zheng Z.Advanced Materials, 2014, 26(31), 5508.
24 Babaahmadi V, Montazer M, Gao W.Carbon, 2017, 118, 443.
25 Bi S, Zhao H, Hou L, et al.Applied Surface Science, 2017, 419, 465.
26 Jia Q X, McCleskey T M, Burrell A K,et al. Nature Materials, 2004, 3(8), 529.
27 Yi Q H, Zhao J, Lou Y H, et al.Acta Physico-Chimica Sinica, 2017, 33 (2), 314 (in Chinese).
易庆华, 赵杰, 娄艳辉, 等.物理化学学报, 2017, 33(2), 314.
28 Liu X, Zhou X, Li Y, et al.Chemistry-An Asian Journal, 2012, 7(5), 862.
29 Zhu C, Li Y, Liu X.Polymers, 2018, 10(6), 573.
30 Liu X, Chang H, Li Y, et al.ACS applied Materials & Interfaces, 2010, 2(2), 529.
31 Yang Y, Huang Q, Niu L,et al. Advanced Materials, 2017, 29(19), 1606679.
32 Zhou Y, Ding X, Hu J Y, et al.Journal of DongHua University (Natural Science), 2016, 42(6), 822 (in Chinese).
周云, 丁辛, 胡吉永, 等.东华大学学报: 自然科学版, 2016, 42(6), 822.
33 Molina J, Del Rio A I, Bonastre J, et al.European Polymer Journal, 2009, 45(4), 1302.
34 Molina J, Del Río A I, Bonastre J, et al.European Polymer Journal, 2008, 44(7), 2087.
35 Molina J, del Rio A I, Bonastre J, et al.Synthetic Metals, 2010, 160(1-2), 99.
36 Vaeth K M, Jensen K F.Advanced Materials, 1999, 11(10), 814.
37 Lau K K S, Gleason K K.Macromolecules, 2006, 39(10), 3688.
38 Zhang L, Fairbanks M, Andrew T L.Advanced Functional Materials, 2017, 27(24), 1700415.
39 Shang S, Yang X, Tao X, et al.Polymer International, 2010, 59(2), 204.
40 Bashir T, Ali M, Cho S W, et al.Polymers for Advanced Technologies, 2013, 24(2), 210.
41 Kovacik P, del Hierro G, Livernois W, et al.Materials Horizons, 2015, 2(2), 221.
42 Vaideki K, Jayakumar S, Rajendran R, et al.Applied Surface Science, 2008, 254(8), 2472.
43 Xue C H, Wang R L, Zhang J, et al.Materials Letters, 2010, 64(3), 327.
44 Tan X Q, Liu J Y, Niu J R, et al.Materials, 2018, 11(10), 1953.
45 Chen Y H, Hsu C C, He J L.Surface and Coatings Technology, 2013, 232, 868.
46 Wei Q F, Ye H, Hou D Y, et al.Journal of Applied Polymer Science, 2006, 99(5), 2384.
47 Scholz J, Nocke G, Hollstein F, et al.Surface and Coatings Technology, 2005, 192(2-3), 252.
48 Kelly P J, Arnell R D.Vacuum, 2000, 56(3), 159.
49 Yuan X, Wei Q, Chen D, et al.Textile Research Journal, 2016, 86(8), 887.
50 Baghriche O, Kiwi J, Pulgarin C, et al.Journal of Photochemistry and Photobiology A: Chemistry, 2012, 229(1), 39.
51 Shahidi S, Ghoranneviss M.Clothing and Textiles Research Journal, 2016, 34(1), 37.
52 Wu Y, Zhang L, Min G, et al.Applied Surface Science, 2016, 384, 413.
53 Depla D, Segers S, Leroy W, et al.Textile Research Journal, 2011, 81(17), 1808.
54 Yip J, Jiang S, Wong C.Surface and Coatings Technology, 2009, 204(3), 380.
55 Osorio-Vargas P, Sanjines R, Ruales C, et al.Journal of Photochemistry and Photobiology A: Chemistry, 2011, 220(1), 70.
56 Hegemann D, Hossain M M, Balazs D J.Progress in Organic Coatings, 2007, 58(2-3), 237.
57 Zhang H.Journal of Industrial Textiles, 2013, 42(3), 283.
58 Lai K, Sun R J, Chen M Y, et al.Textile Research Journal, 2007, 77(4), 242.
59 Weickmann H, Tiller J C, Thomann R, et al.Macromolecular Materials and Engineering, 2005, 290(9), 875.
60 Gorberg B L, Ivanov A A, Mamontov O V, et al. Russian Joural of General Chemistry, 2013, 83(3), 157.
61 Lee J, Yoon J, Kim H G, et al.NPG Asia Materials, 2016, 8(11), e331.
62 Kalanyan B, Oldham C J, Sweet III W J, et al.ACS Applied Materials & Interfaces, 2013, 5(11), 5253.
63 Cui Z.Printed Electronics: Materials, Technologies and Applications, Higher Education Press, 2012 (in Chinese).
崔铮. 印刷电子学——材料、技术及其应用, 高等教育出版社, 2012.
64 Yokus M A, Foote R, Jur J S.IEEE Sensors Journal, 2016, 16(22), 7967.
65 Yang K, Torah R, Wei Y, et al.Textile Research Journal, 2013, 83(19), 2023.
66 Wang Z, Wang W, Jiang Z, et al.Applied Surface Science, 2017, 396, 208.
67 Matsuhisa N, Kaltenbrunner M, Yokota T, et al.Nature Communications, 2015, 6, 7461.
68 Matsuhisa N, Inoue D, Zalar P, et al.Nature Materials, 2017, 16(8), 834.
69 Jin H, Nayeem M O G, Lee S, et al.ACS Nano, 2019,13,7905.
70 Miyamoto A, Lee S, Cooray N F, et al.Nature Nanotechnology, 2017, 12(9), 907.
71 Someya T, Amagai M.Nature Biotechnology, 2019, 37(4), 382.
72 Jiang Z, Nayeem M O G, Fukuda K, et al.Advanced Materials, 2019, 31(37), 1903446.
73 Matsuhisa N, Chen X, Bao Z, et al.Chemical Society Reviews, 2019, 48(11), 2946.
74 Rogers J A, Someya T, Huang Y.Science, 2010, 327(5973), 1603.
75 Stempien Z, Rybicki E, Rybicki T, et al.Sensors and Actuators B: Che-mical, 2016, 224, 714.
76 Krykpayev B, Farooqui M F, Bilal R M, et al.Microelectronics Journal, 2017, 65, 40.
77 Whittow W G, Chauraya A, Vardaxoglou J C, et al.IEEE Antennas and Wireless Propagation Letters, 2014, 13, 71.
78 Wang C, Zhang M, Xia K, et al.ACS Applied Materials & Interfaces, 2017, 9(15), 13331.
79 Gu Y Y, Qiu X Y, Hu Q M, et al.Materials Review, 2005, 19(2), 53 (in Chinese).
古映莹, 邱小勇, 胡启明, 等.材料导报, 2005, 19(2), 53.
80 Maity S, Chatterjee A.Journal of Industrial Textiles, 2018, 47(8), 2228.
81 Dawson J F, Austin A N, Flintoft I D,et al. IEEE Transactions on Electromagnetic Compatibility, 2016, 59(1), 84.
82 Lee J, Jung B M, Lee S B, et al.Applied Surface Science, 2017, 415, 99.
83 Engin Sagirli F Z, Kayali E S, Sarac A S.Journal of Industrial Textiles, 2018, 47(5), 656.
84 Lin Z I, Lou C W, Pan Y J, et al.Composites Science and Technology, 2017, 141, 74.
85 Zhao H, Hou L, Lu Y.Chemical Engineering Journal, 2016, 297, 170.
86 Atalay O, Atalay A, Gafford J, et al.Advanced Materials Technologies, 2018, 3(1), 1700237.
87 Guo X, Huang Y, Cai X, et al.Measurement Science and Technology, 2016, 27(4), 045105.
88 Wang C, Li X, Gao E, et al.Advanced Materials, 2016, 28(31), 6640.
89 Lee J, Kwon H, Seo J, et al.Advanced Materials, 2015, 27(15), 2433.
90 Li Y, Samad Y A, Liao K.Journal of Materials Chemistry A, 2015, 3(5), 2181.
91 Samad Y A, Komatsu K, Yamashita D, et al.Sensors and Actuators B: Chemical, 2017, 240, 1083.
92 Jerkovic I, Koncar V, Grancaric A.Sensors, 2017, 17(10), 2297.
93 O’Neill J, Lu J, Dockter R, et al.Sensors, 2018, 18(4), 953.
94 Li R, Si Y, Zhu Z, et al.Advanced Materials, 2017, 29(36), 1700253.
95 Smith M K, Mirica K A.Journal of the American Chemical Society, 2017, 139(46), 16759.
96 Eom J, Jaisutti R, Lee H, et al.ACS Applied Materials & Interfaces, 2017, 9(11), 10190.
97 De B, Yadav A, Khan S, et al.ACS Applied Materials & Interfaces, 2017, 9(23), 19870.
98 Huang Y, Hu H, Huang Y, et al.ACS Nano, 2015, 9(5), 4766.
99 Zhang P, Zhang H, Yan C, et al.Materials Research Express, 2017, 4(7), 075602.
100 Kaushik V, Lee J, Hong J, et al.Nanomaterials, 2015, 5(3), 1493.
101 Jost K, Dion G, Gogotsi Y.Journal of Materials Chemistry A, 2014, 2(28), 10776.
102 Nagaraju G, Ko Y H, Yu J S.Journal of Power Sources, 2015, 283, 25.
103 Xu X, Fukuda K, Karki A, et al.Proceedings of the National Academy of Sciences, 2018, 115(18), 4589.
104 Paradiso R, Loriga G, Taccini N.IEEE transactions on Information Technology in biomedicine, 2005, 9(3), 337.
105 Chowdhury F N, Sood R, Nam H, et al. In: proc. SPIE 11020, Smart Biomedical and Physiological Sensor Technology XV. Baltimore, 2019, pp.110200T.
106 Moy T, Huang L, Rieutort-Louis W, et al.IEEE Journal of Solid-State Circuits, 2016, 52(1), 309.
107 Ankhili A, Tao X, Cochrane C, et al.Materials, 2018, 11(2), 256.
108 Jiang Y, Togane M, Lu B, et al.Frontiers in Neuroscience, 2017, 11, 33.
109 Liu C Y. In: Proceedings of the Cross-Straits, Hong Kong and Macao Smart Textile Materials Innovation Youth Forum. Hangzhou, 2019, pp. 68.
[1] 林进义,安翔,白鲁冰,徐曼,韦传新,解令海,林宗琼,黄维. 柔性高分子半导体:力学性能和设计策略[J]. 材料导报, 2020, 34(1): 1001-1008.
[2] 崔铮. 柔性混合电子——基于印刷加工实现柔性电子制造[J]. 材料导报, 2020, 34(1): 1009-1013.
[3] 陆骐峰,孙富钦,王子豪,张珽. 柔性人工突触:面向智能人机交互界面和高效率神经网络计算的基础器件[J]. 材料导报, 2020, 34(1): 1022-1049.
[4] 骆泽纬,田希悦,范基辰,杨鑫,樊天意,王超伦,吴幸,褚君浩. 智能时代下的新型柔性压阻传感器[J]. 材料导报, 2020, 34(1): 1069-1079.
[5] 任秦博,王景平,杨立,李翔,王学川. 用于电阻式柔性应变传感器的导电聚合物复合材料研究进展[J]. 材料导报, 2020, 34(1): 1080-1094.
[6] 高久伟,卢乾波,郑璐,王学文,黄维. 柔性生物电传感技术[J]. 材料导报, 2020, 34(1): 1095-1106.
[7] 宋江,王腾蛟,冯涛,CHAN Siew Yin,荣帆,李鹏,黄维. 柔性电子在糖尿病诊断、治疗及护理中的应用综述[J]. 材料导报, 2020, 34(1): 1126-1134.
[8] 李一帆,刘宇航,孙晋蒙,吴乾鑫,龚昕,杜洪方,艾伟,黄维. 柔性储能器件的电极设计研究进展[J]. 材料导报, 2020, 34(1): 1177-1186.
[9] 岳瑞瑞, 王会才, 刘霞平, 杨继斌, 汪振文. 可拉伸超级电容器碳基复合电极材料的研究进展[J]. 材料导报, 2019, 33(21): 3580-3587.
[10] 王瑞平,袁长龙,陶劲松. 纳米纤维素改性及其在柔性电子方面的应用[J]. 材料导报, 2019, 33(17): 2949-2957.
[11] 吴艳光,羿庄城,葛震,杜飞鹏,张云飞. 提高聚(3,4-乙撑二氧噻吩)∶聚苯乙烯磺酸电导率的最新研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 26-31.
[12] 傅深娜, 马利, 甘孟瑜, 汪仕勇. 三维石墨烯及其复合材料的制备及在超级电容器中的研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 9-15.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed