Flexible Polymeric Semiconductors: Intrinsic Mechanical Properties and Design Strategy
LIN Jinyi1,2,AN Xiang1,BAI Lubing1,XU Man3,WEI Chuanxin1,XIE Linghai2,3,LIN Zongqiong2,HUANG Wei1,2,3,
1 Institute of Advanced Materials (IAM),Nanjing Tech University,Nanjing 211816,China 2 Institute of Flexible Electronics (IFE),Northwestern Polytechnical University,Xi'an 710072,China 3 Institute of Advanced Materials (IAM),Nanjing University of Posts & Telecommunications,Nanjing 210023,China
Abstract: In the last decade, polymeric semiconductors have attracted wide attentions owing to their potential application in organic light-emitting diodes, organic solar cell and organic field-effect transistors. Some polymer materials, especially elastomers, have excellent flexibility, such as strechability, bendability, etc., so polymeric semiconductors are considered as the most promising kind of materials in the future research of flexible electronics. The key point for the flexibility evaluation of polymeric semiconductors is intrinsic mechanical properties, for which, according to relevant works, researchers have already developed some effective approaches to determine, including stretching method, sinusoidal buckling technique, nanoindentation method, and AFM nanomechanical mapping. On the other hand, a variety of ideas for designing flexible polymeric semiconductor materials have emerged and can be classified into supramolecular strategy, "chain flexibilization" strategy, and doping/blending strategy. It is noteworthy that the orthogonal dynamic non-covalent interaction is a fundamental molecular mechanism to induce the flexibility of conjugated polymers. And the tactic based on this mechanism provides a universal method to design flexible semiconductor materials and deserves further studies. This review gives a summary on the intrinsic mechanical properties and design strategies of flexible polymeric semiconductor materials based on the state-of-the-art researches.
作者简介: 林进义,2008年在福建师范大学高分子材料与工程专业获得学士学位,2014年7月博士毕业于南京邮电大学信息材料与纳米技术研究院(IAM团队)信息材料专业, 2015年在英国帝国理工学院和牛津大学塑料电子研究中心从事相关博士后/访问学者研究,合作者为Donal D C Bradley院士。2017年进入南京工业大学先进材料研究院工作。长期从事超分子塑料电子学领域的研究,主要聚焦于揭示塑料电子学中高分子物理化学共性问题,实现高性能聚合物半导体的可控制造及其智能化、柔性化。近五年来,相关研究成果以第一作者或通讯作者先后在Chem、Advanced Materials、iScience、Cell Report Physical Science、National Science Review、Nano Energy、Journal of Physical Chemistry Letters、Macromolecules、ACS Macro Letters等国际著名高分子科学领域权威学术期刊上发表或录用研究性论文近40篇(其中IF>5.0,30篇),已申请或授权发明专利8项,入选江苏省“六大人才高峰”高层次人才计划,是The Royal Society of Chemistry's Journal of Materials Chemistry C Emerging Investigators 2018 (RSC-JMCC 2018年度全球科研新星,总共30位)。目前主持包括国家自然科学基金面上项目、青年项目、江苏省高等学校自然科学研究A类重大项目等在内的科研项目10余项。 黄维,中国科学院院士,俄罗斯科学院外籍院士、名誉博士,亚太材料科学院院士、东盟工程与技术科学院外籍院士、巴基斯坦科学院院士,西北工业大学常务副校长,教授、博导,有机电子学/柔性电子学家。教育部“长江学者”特聘教授,国家杰出青年科学基金获得者,“千人计划”(溯及既往)国家特聘专家,科技部“973”项目首席科学家。亚太地区工程组织联合会(FEIAP)主席、英国谢菲尔德大学名誉博士、英国皇家化学学会会士、美国光学学会会士、国际光学工程学会会士,中国科协常委,中国化学会副理事长,中国化工学会副理事长,Research、npj Flexible Electronics和Advanced Materials等国际权威学术杂志主编或(顾问)编委。长期从事有机光电、柔性电子等相关领域的研究,并取得了大量系统性、创新性的研究成果,以第一或通讯作者身份在Nature、Nature Materials、Nature Photonics、Nature Nanotechnology、Nature Electronics、Nature Communications、Advanced Materials、Journal of the American Chemical Society等SCI学术期刊发表研究论文760余篇,H因子为121,国际同行引用70 000余次,是材料科学与化学领域全球高被引学者,获授权美国、新加坡和中国等国发明专利380余项,出版了《有机电子学》《生物光电子学》《有机薄膜晶体管材料器件和应用》《OLED显示技术》等学术专著。曾获国家自然科学奖二等奖和何梁何利基金科技进步奖等奖励,成果入围中国高等学校十大科技进展。
引用本文:
林进义, 安翔, 白鲁冰, 徐曼, 韦传新, 解令海, 林宗琼, 黄维. 柔性高分子半导体:力学性能和设计策略[J]. 材料导报, 2020, 34(1): 1001-1008.
LIN Jinyi, AN Xiang, BAI Lubing, XU Man, WEI Chuanxin, XIE Linghai, LIN Zongqiong, HUANG Wei. Flexible Polymeric Semiconductors: Intrinsic Mechanical Properties and Design Strategy. Materials Reports, 2020, 34(1): 1001-1008.
1 Tsujimura T, Fukawa J, Endoh K, et al.SID Symposium Digest of Technical Papers, 2014, 45, 104. 2 Lin J, Liu B, Yu M, et al.Advanced Materials, 2019, 31, 1804811. 3 Wu D Y, Meure S, Solomon D. Progress in Polymer Science, 2008, 33, 479. 4 Xie L H, Yin C R, Lai W Y, et al.Progress in Polymer Science, 2012, 37, 1192. 5 Aida T, Meijer E W, Stupp S I, et al.Science, 2012, 335, 813. 6 Smirnov J R C, Sousaraei A, Osorio M R, et al.npj Flexible Electronics, 2019, 3, 17. 7 Smith J T, Shah S S, Goryll M, et al.IEEE Sensors Journal, 2014, 14, 937. 8 Asad M, Wang R, Ra Y H, et al. npj Flexible Electronics, 2019, 3, 16. 9 Lian C, Piksa M, Yoshida K, et al.npj Flexible Electronics, 2019, 3, 18. 10 Kaidarova A, Khan M A, Marengo M, et al.npj Flexible Electronics, 2019, 3, 15. 11 Harper A F, Diemer P J, Jurchescu O D. npj Flexible Electronics, 2019, 3, 11. 12 Xue W, Lin J Y, Liu B, et al.Polymer, 2018, 153, 338. 13 Mukhopadhyay S C. IEEE Sensors Journal, 2013, 15, 1321. 14 White M S, Kaltenbrunner M, Głowacki E D, et al.Nature Photonics, 2013, 7, 811. 15 Luo W, Chen W, Leng C, et al. Proceedings of SPIE, 2014, 9272, 927206. 16 Vosgueritchian M, Tok J B H, Bao Z. Nature Photonics, 2013, 7, 769. 17 Zhang Z, Guo K, Li Y, et al.Nature Photonics,2015, 9, 233. 18 Jain A, George S J. Materials Today, 2015, 18, 206. 19 Yokota T, Zalar P, Kaltenbrunner M, et al.Science Advances, 2016, 2, e1501856. 20 Heeger A J. Chemical Society Reviews, 2010, 39, 2354. 21 Lipomi D J, Bao Z. MRS Bulletin, 2017, 42, 93. 22 Hoeben F J, Jonkheijm P, Meijer E W, et al.Chemical Reviews, 2005, 36, 1491. 23 Amabilino D B, Smith D K, Steed J W. Chemical Society Reviews, 2017, 46, 2404. 24 Babu S S, Möhwald H, Nakanishi T. Chemical Society Reviews, 2010, 39, 4021. 25 Han D, Khan Y, Ting J, et al.Advanced Materials, 2017, 29, 1606206. 26 So F, Kondakov D. Advanced Materials, 2010, 22, 3762. 27 Lee S Y, Yasuda T, Komiyama H, et al.Advanced Materials, 2016, 28, 4019. 28 Wu H, Ying L, Yang W, et al.Chemical Society Review, 2009, 38, 3391. 29 Li Y, Meng H, Liu T, et al.Advanced Materials, 2019, 31, e1904585. 30 Hou J, Inganas O, Friend R H, et al.Nature Materials, 2018, 17, 119. 31 Chen H Y, Hou J, Zhang S, et al.Nature Photonics, 2009, 3, 649. 32 Sirringhaus H. Advanced Materials, 2014, 26, 1319. 33 Wang C, Dong H, Hu W, et al.Chemical Reviview, 2012, 112, 2208. 34 Yen H J, Shan C, Wang L, et al.Polymers, 2017, 9, 25. 35 Torsi L, Magliulo M, Manoli K, et al.Chemical Society Revivew, 2013, 42, 8612. 36 Duarte A, Pu, K Y Liu, B, et al.Chemistry of Materials, 2011, 23, 501. 37 Forrest S R. Nature, 2004, 428, 911. 38 Müller C, Goffri S, Breiby D W, et al. Advanced Functional Materials, 2007, 17, 2674. 39 Kim J H, Nizami A, Hwangbo Y, et al.Nature Communication, 2013, 4, 2520. 40 Kim J S, Kim J H, Lee, W, et al.Macromolecules, 2015, 48, 4339. 41 Zhang S, Ocheje M U, Luo S, et al. Macromolecular Rapid Communication, 2018, 39, e1800092. 42 Rodriquez D, Kim J H, Root S E, et al.ACS Applied Materials Interfaces, 2017, 9, 8855. 43 Stafford C M, Harrison C, Beers K L, et al.Nature Materials, 2004, 3, 545. 44 Printz A D, Zaretski A V, Savagatrup S, et al.ACS Applied Materials Interfaces, 2015, 7, 23257. 45 Zeng K, Chen Z K, Shen L, et al.Thin Solid Films, 2005, 477, 111. 46 Dokukin M. E, Sokolov I. Macromolecules, 2012, 45, 4277. 47 Derjaguin B V, Muller V M, Toporov Y P. Journal of Colloid and Interface Science, 1975, 53, 314. 48 Tong T, Babatope B, Admassie S, et al. Journal of Applied Physics, 2009, 106, 083708. 49 Eisele D M, Arias D H, Fu X, et al.Proceedings of the National Academy of Sciences, 2014, 111, E3367. 50 Yang Y, Urban M W. Chemical Society Reviews, 2013, 42, 7446. 51 Bassani D M, Jonusauskaite L, Lavie-Cambot A, et al.Coordination Chemistry Reviews, 2010, 254, 2429. 52 Meijer E W, Schenning A P H J. Nature, 2002, 419, 353. 53 Babu S S, Praveen V K, Ajayaghosh A. Chemical Reviews, 2014, 114, 1973. 54 Wang C, Wu H, Chen Z, et al.Nature Chemistry, 2013, 5, 1042. 55 Oh J Y, Rondeau-Gagné S, Chiu Y C, et al.Nature, 2016, 539, 411. 56 Rao Y L, Chortos A, Pfattner R, et al.Journal of the American Chemical Society, 2016, 138, 6020. 57 Sekitani T, Nakajima H, Maeda H, et al.Nature Materials, 2009, 8, 494. 58 Baek P, Aydemir N, An Y, et al.Chemistry of Materials, 2017, 29, 8850. 59 Yan X, Wang F, Zheng B, et al.Chemical Society Reviews, 2012, 41, 6042. 60 Spano F C, Silva C. Annual Review of Physical Chemistry, 2014, 65, 477. 61 Evans R C. Journal of Materials Chemistry C, 2013, 1, 4190. 62 Zhao Y, Gumyusenge A, He J, et al.Advanced Functional Materials, 1705584. 63 Bai L B, Liu B, Han Y M, et al.ACS Applied Materials Interfaces, 2017, 9, 37856. 64 Liu B, Lin J, Liu F, et al.ACS Applied Materials Interfaces, 2016, 8, 21648. 65 Zhao Y, Zhao X, Roders M, et al.Advanced Materials, 2017, 29, 1605056. 66 Wang G J N, Molina Lopez F, Zhang H, et al.Macromolecules, 2018, 51, 4976. 67 Xu J, Wang S, Wang G J N, et al.Science, 2017, 355, 59. 68 Ho C L, Yu Z Q, Wong W Y.Chemical Society Reviews, 2016, 45, 5264. 69 Zou B, Chen Y, Liu Y, et al.Advanced Science, 2019, 6, 1801283. 70 Huang Y, Huang Y, Zhu M, et al.ACS Nano, 2015, 9, 6242.