Please wait a minute...
材料导报  2020, Vol. 34 Issue (1): 1001-1008    https://doi.org/10.11896/cldb.19110117
  |
柔性高分子半导体:力学性能和设计策略
林进义1,2,安翔1,白鲁冰1,徐曼3,韦传新1,解令海2,3,林宗琼2,黄维1,2,3,
1 南京工业大学先进材料研究院,南京 211816
2 西北工业大学柔性电子研究院,西安 710072
3 南京邮电大学信息材料与纳米技术研究院,南京 210023
Flexible Polymeric Semiconductors: Intrinsic Mechanical Properties and Design Strategy
LIN Jinyi1,2,AN Xiang1,BAI Lubing1,XU Man3,WEI Chuanxin1,XIE Linghai2,3,LIN Zongqiong2,HUANG Wei1,2,3,
1 Institute of Advanced Materials (IAM),Nanjing Tech University,Nanjing 211816,China
2 Institute of Flexible Electronics (IFE),Northwestern Polytechnical University,Xi'an 710072,China
3 Institute of Advanced Materials (IAM),Nanjing University of Posts & Telecommunications,Nanjing 210023,China
下载:  全 文 ( PDF ) ( 7739KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,高分子半导体在有机发光、有机光伏和有机场效应晶体管等领域扮演着愈发重要的角色。某些高分子材料特别是高分子弹性体,具有优异的可拉伸、可弯曲等力学特性,因而高分子半导体在柔性电子领域具有广阔的应用前景。力学性能是评价高分子半导体柔性行为的基本依据,相关研究中对力学特性的表征方法包括拉伸法、正弦屈曲技术、纳米压痕技术和原子力显微镜纳米力学图谱等。而在柔性高分子半导体材料的构建方面,也涌现出许多可供参考的思路,归纳起来主要有超分子功能化、主链柔性化、掺杂等设计策略,其中多重非共价弱作用策略是柔性高分子半导体的普适性设计方法,值得深入探索和研究。本综述旨在总结柔性高分子半导体的力学特性和设计策略,以期为相关研究提供参考和借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林进义
安翔
白鲁冰
徐曼
韦传新
解令海
林宗琼
黄维
关键词:  柔性电子  柔性高分子半导体  材料本征力学  设计策略  光电子器件    
Abstract: In the last decade, polymeric semiconductors have attracted wide attentions owing to their potential application in organic light-emitting diodes, organic solar cell and organic field-effect transistors. Some polymer materials, especially elastomers, have excellent flexibility, such as strechability, bendability, etc., so polymeric semiconductors are considered as the most promising kind of materials in the future research of flexible electronics. The key point for the flexibility evaluation of polymeric semiconductors is intrinsic mechanical properties, for which, according to relevant works, researchers have already developed some effective approaches to determine, including stretching method, sinusoidal buckling technique, nanoindentation method, and AFM nanomechanical mapping. On the other hand, a variety of ideas for designing flexible polymeric semiconductor materials have emerged and can be classified into supramolecular strategy, "chain flexibilization" strategy, and doping/blending strategy. It is noteworthy that the orthogonal dynamic non-covalent interaction is a fundamental molecular mechanism to induce the flexibility of conjugated polymers. And the tactic based on this mechanism provides a universal method to design flexible semiconductor materials and deserves further studies. This review gives a summary on the intrinsic mechanical properties and design strategies of flexible polymeric semiconductor materials based on the state-of-the-art researches.
Key words:  flexible electronics    flexible polymeric semiconductor    intrinsic mechanics    design strategy    optoelectronic device
               出版日期:  2020-01-10      发布日期:  2020-01-15
ZTFLH:  O631.2  
基金资助: 国家自然科学基金(61874053);江苏省六大高峰人才项目(XYDXX-019);江苏省高校自然基金重大项目(18KJA430009);吉林大学超分子结构与材料国家重点实验室开放基金(sklssm2019017);江苏省有机电子与信息显示国家重点实验室培育开放基金
通讯作者:  wei-huang@njtech.edu.cn   
作者简介:  林进义,2008年在福建师范大学高分子材料与工程专业获得学士学位,2014年7月博士毕业于南京邮电大学信息材料与纳米技术研究院(IAM团队)信息材料专业, 2015年在英国帝国理工学院和牛津大学塑料电子研究中心从事相关博士后/访问学者研究,合作者为Donal D C Bradley院士。2017年进入南京工业大学先进材料研究院工作。长期从事超分子塑料电子学领域的研究,主要聚焦于揭示塑料电子学中高分子物理化学共性问题,实现高性能聚合物半导体的可控制造及其智能化、柔性化。近五年来,相关研究成果以第一作者或通讯作者先后在ChemAdvanced MaterialsiScienceCell Report Physical Science、National Science Review、Nano Energy、Journal of Physical Chemistry Letters、Macromolecules、ACS Macro Letters等国际著名高分子科学领域权威学术期刊上发表或录用研究性论文近40篇(其中IF>5.0,30篇),已申请或授权发明专利8项,入选江苏省“六大人才高峰”高层次人才计划,是The Royal Society of Chemistry's Journal of Materials Chemistry C Emerging Investigators 2018 (RSC-JMCC 2018年度全球科研新星,总共30位)。目前主持包括国家自然科学基金面上项目、青年项目、江苏省高等学校自然科学研究A类重大项目等在内的科研项目10余项。
黄维,中国科学院院士,俄罗斯科学院外籍院士、名誉博士,亚太材料科学院院士、东盟工程与技术科学院外籍院士、巴基斯坦科学院院士,西北工业大学常务副校长,教授、博导,有机电子学/柔性电子学家。教育部“长江学者”特聘教授,国家杰出青年科学基金获得者,“千人计划”(溯及既往)国家特聘专家,科技部“973”项目首席科学家。亚太地区工程组织联合会(FEIAP)主席、英国谢菲尔德大学名誉博士、英国皇家化学学会会士、美国光学学会会士、国际光学工程学会会士,中国科协常委,中国化学会副理事长,中国化工学会副理事长,Research、npj Flexible Electronics和Advanced Materials等国际权威学术杂志主编或(顾问)编委。长期从事有机光电、柔性电子等相关领域的研究,并取得了大量系统性、创新性的研究成果,以第一或通讯作者身份在Nature、Nature Materials、Nature Photonics、Nature Nanotechnology、Nature Electronics、Nature Communications、Advanced Materials、Journal of the American Chemical Society等SCI学术期刊发表研究论文760余篇,H因子为121,国际同行引用70 000余次,是材料科学与化学领域全球高被引学者,获授权美国、新加坡和中国等国发明专利380余项,出版了《有机电子学》《生物光电子学》《有机薄膜晶体管材料器件和应用》《OLED显示技术》等学术专著。曾获国家自然科学奖二等奖和何梁何利基金科技进步奖等奖励,成果入围中国高等学校十大科技进展。
引用本文:    
林进义, 安翔, 白鲁冰, 徐曼, 韦传新, 解令海, 林宗琼, 黄维. 柔性高分子半导体:力学性能和设计策略[J]. 材料导报, 2020, 34(1): 1001-1008.
LIN Jinyi, AN Xiang, BAI Lubing, XU Man, WEI Chuanxin, XIE Linghai, LIN Zongqiong, HUANG Wei. Flexible Polymeric Semiconductors: Intrinsic Mechanical Properties and Design Strategy. Materials Reports, 2020, 34(1): 1001-1008.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110117  或          http://www.mater-rep.com/CN/Y2020/V34/I1/1001
1 Tsujimura T, Fukawa J, Endoh K, et al.SID Symposium Digest of Technical Papers, 2014, 45, 104.
2 Lin J, Liu B, Yu M, et al.Advanced Materials, 2019, 31, 1804811.
3 Wu D Y, Meure S, Solomon D. Progress in Polymer Science, 2008, 33, 479.
4 Xie L H, Yin C R, Lai W Y, et al.Progress in Polymer Science, 2012, 37, 1192.
5 Aida T, Meijer E W, Stupp S I, et al.Science, 2012, 335, 813.
6 Smirnov J R C, Sousaraei A, Osorio M R, et al.npj Flexible Electronics, 2019, 3, 17.
7 Smith J T, Shah S S, Goryll M, et al.IEEE Sensors Journal, 2014, 14, 937.
8 Asad M, Wang R, Ra Y H, et al. npj Flexible Electronics, 2019, 3, 16.
9 Lian C, Piksa M, Yoshida K, et al.npj Flexible Electronics, 2019, 3, 18.
10 Kaidarova A, Khan M A, Marengo M, et al.npj Flexible Electronics, 2019, 3, 15.
11 Harper A F, Diemer P J, Jurchescu O D. npj Flexible Electronics, 2019, 3, 11.
12 Xue W, Lin J Y, Liu B, et al.Polymer, 2018, 153, 338.
13 Mukhopadhyay S C. IEEE Sensors Journal, 2013, 15, 1321.
14 White M S, Kaltenbrunner M, Głowacki E D, et al.Nature Photonics, 2013, 7, 811.
15 Luo W, Chen W, Leng C, et al. Proceedings of SPIE, 2014, 9272, 927206.
16 Vosgueritchian M, Tok J B H, Bao Z. Nature Photonics, 2013, 7, 769.
17 Zhang Z, Guo K, Li Y, et al.Nature Photonics,2015, 9, 233.
18 Jain A, George S J. Materials Today, 2015, 18, 206.
19 Yokota T, Zalar P, Kaltenbrunner M, et al.Science Advances, 2016, 2, e1501856.
20 Heeger A J. Chemical Society Reviews, 2010, 39, 2354.
21 Lipomi D J, Bao Z. MRS Bulletin, 2017, 42, 93.
22 Hoeben F J, Jonkheijm P, Meijer E W, et al.Chemical Reviews, 2005, 36, 1491.
23 Amabilino D B, Smith D K, Steed J W. Chemical Society Reviews, 2017, 46, 2404.
24 Babu S S, Möhwald H, Nakanishi T. Chemical Society Reviews, 2010, 39, 4021.
25 Han D, Khan Y, Ting J, et al.Advanced Materials, 2017, 29, 1606206.
26 So F, Kondakov D. Advanced Materials, 2010, 22, 3762.
27 Lee S Y, Yasuda T, Komiyama H, et al.Advanced Materials, 2016, 28, 4019.
28 Wu H, Ying L, Yang W, et al.Chemical Society Review, 2009, 38, 3391.
29 Li Y, Meng H, Liu T, et al.Advanced Materials, 2019, 31, e1904585.
30 Hou J, Inganas O, Friend R H, et al.Nature Materials, 2018, 17, 119.
31 Chen H Y, Hou J, Zhang S, et al.Nature Photonics, 2009, 3, 649.
32 Sirringhaus H. Advanced Materials, 2014, 26, 1319.
33 Wang C, Dong H, Hu W, et al.Chemical Reviview, 2012, 112, 2208.
34 Yen H J, Shan C, Wang L, et al.Polymers, 2017, 9, 25.
35 Torsi L, Magliulo M, Manoli K, et al.Chemical Society Revivew, 2013, 42, 8612.
36 Duarte A, Pu, K Y Liu, B, et al.Chemistry of Materials, 2011, 23, 501.
37 Forrest S R. Nature, 2004, 428, 911.
38 Müller C, Goffri S, Breiby D W, et al. Advanced Functional Materials, 2007, 17, 2674.
39 Kim J H, Nizami A, Hwangbo Y, et al.Nature Communication, 2013, 4, 2520.
40 Kim J S, Kim J H, Lee, W, et al.Macromolecules, 2015, 48, 4339.
41 Zhang S, Ocheje M U, Luo S, et al. Macromolecular Rapid Communication, 2018, 39, e1800092.
42 Rodriquez D, Kim J H, Root S E, et al.ACS Applied Materials Interfaces, 2017, 9, 8855.
43 Stafford C M, Harrison C, Beers K L, et al.Nature Materials, 2004, 3, 545.
44 Printz A D, Zaretski A V, Savagatrup S, et al.ACS Applied Materials Interfaces, 2015, 7, 23257.
45 Zeng K, Chen Z K, Shen L, et al.Thin Solid Films, 2005, 477, 111.
46 Dokukin M. E, Sokolov I. Macromolecules, 2012, 45, 4277.
47 Derjaguin B V, Muller V M, Toporov Y P. Journal of Colloid and Interface Science, 1975, 53, 314.
48 Tong T, Babatope B, Admassie S, et al. Journal of Applied Physics, 2009, 106, 083708.
49 Eisele D M, Arias D H, Fu X, et al.Proceedings of the National Academy of Sciences, 2014, 111, E3367.
50 Yang Y, Urban M W. Chemical Society Reviews, 2013, 42, 7446.
51 Bassani D M, Jonusauskaite L, Lavie-Cambot A, et al.Coordination Chemistry Reviews, 2010, 254, 2429.
52 Meijer E W, Schenning A P H J. Nature, 2002, 419, 353.
53 Babu S S, Praveen V K, Ajayaghosh A. Chemical Reviews, 2014, 114, 1973.
54 Wang C, Wu H, Chen Z, et al.Nature Chemistry, 2013, 5, 1042.
55 Oh J Y, Rondeau-Gagné S, Chiu Y C, et al.Nature, 2016, 539, 411.
56 Rao Y L, Chortos A, Pfattner R, et al.Journal of the American Chemical Society, 2016, 138, 6020.
57 Sekitani T, Nakajima H, Maeda H, et al.Nature Materials, 2009, 8, 494.
58 Baek P, Aydemir N, An Y, et al.Chemistry of Materials, 2017, 29, 8850.
59 Yan X, Wang F, Zheng B, et al.Chemical Society Reviews, 2012, 41, 6042.
60 Spano F C, Silva C. Annual Review of Physical Chemistry, 2014, 65, 477.
61 Evans R C. Journal of Materials Chemistry C, 2013, 1, 4190.
62 Zhao Y, Gumyusenge A, He J, et al.Advanced Functional Materials, 1705584.
63 Bai L B, Liu B, Han Y M, et al.ACS Applied Materials Interfaces, 2017, 9, 37856.
64 Liu B, Lin J, Liu F, et al.ACS Applied Materials Interfaces, 2016, 8, 21648.
65 Zhao Y, Zhao X, Roders M, et al.Advanced Materials, 2017, 29, 1605056.
66 Wang G J N, Molina Lopez F, Zhang H, et al.Macromolecules, 2018, 51, 4976.
67 Xu J, Wang S, Wang G J N, et al.Science, 2017, 355, 59.
68 Ho C L, Yu Z Q, Wong W Y.Chemical Society Reviews, 2016, 45, 5264.
69 Zou B, Chen Y, Liu Y, et al.Advanced Science, 2019, 6, 1801283.
70 Huang Y, Huang Y, Zhu M, et al.ACS Nano, 2015, 9, 6242.
[1] 崔铮. 柔性混合电子——基于印刷加工实现柔性电子制造[J]. 材料导报, 2020, 34(1): 1009-1013.
[2] 陆骐峰,孙富钦,王子豪,张珽. 柔性人工突触:面向智能人机交互界面和高效率神经网络计算的基础器件[J]. 材料导报, 2020, 34(1): 1022-1049.
[3] 骆泽纬,田希悦,范基辰,杨鑫,樊天意,王超伦,吴幸,褚君浩. 智能时代下的新型柔性压阻传感器[J]. 材料导报, 2020, 34(1): 1069-1079.
[4] 马飞祥,丁晨,凌忠文,袁伟,孟秀清,苏文明,崔铮. 导电织物制备方法及应用研究进展[J]. 材料导报, 2020, 34(1): 1114-1125.
[5] 宋江,王腾蛟,冯涛,CHAN Siew Yin,荣帆,李鹏,黄维. 柔性电子在糖尿病诊断、治疗及护理中的应用综述[J]. 材料导报, 2020, 34(1): 1126-1134.
[6] 李一帆,刘宇航,孙晋蒙,吴乾鑫,龚昕,杜洪方,艾伟,黄维. 柔性储能器件的电极设计研究进展[J]. 材料导报, 2020, 34(1): 1177-1186.
[7] 王瑞平,袁长龙,陶劲松. 纳米纤维素改性及其在柔性电子方面的应用[J]. 材料导报, 2019, 33(17): 2949-2957.
[8] 马浩, 杨瑞霞, 李春静. 层状二硫化钼材料的制备和应用进展*[J]. 《材料导报》期刊社, 2017, 31(3): 7-14.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed