Please wait a minute...
材料导报  2020, Vol. 34 Issue (1): 1177-1186    https://doi.org/10.11896/cldb.19110021
  |
柔性储能器件的电极设计研究进展
李一帆1,,刘宇航1,,孙晋蒙1,吴乾鑫1,龚昕1,杜洪方1,艾伟1,,黄维1,2,3,
1 西北工业大学陕西柔性电子研究院,西安710072
2 南京工业大学先进材料研究院,南京 211816
3 南京邮电大学信息材料与纳米技术研究院,南京 210023
Progress of Electrode Designs for Flexible Energy Storage Devices
LI Yifan1,,LIU Yuhang1,,SUN Jinmeng1,WU Qianxin1,GONG Xin1,DU Hongfang1,AI Wei1,,HUANG Wei1,2,3,
1 Shaanxi Institute of Flexible Electronics,Northwestern Polytechnical University,Xi'an 710072,China
2 Institute of Advanced Materials,Nanjing Tech University,Nanjing 211816,China
3 Institute of Advanced Materials,Nanjing University of Posts and Telecommunications,Nanjing 210023,China
下载:  全 文 ( PDF ) ( 7507KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着制造技术的飞速发展,便携式电子设备正朝着柔性化、轻质化、微型化及智能化方向发展,能够弯曲、折叠、扭曲、拉伸等协调变形的柔性电子设备应运而生。作为柔性电子设备的关键部件,储能器件的设计成为柔性电子实际应用必须攻克的难题。传统储能器件是刚性的,难以与柔性电子设备相适配,在变形时易造成电极材料与集流体分离,严重影响了电化学性能,甚至造成短路,产生重大的安全隐患。基于此,开发新型柔性储能器件,如柔性锂离子电池、柔性锂硫电池、柔性锂金属电池、柔性超级电容器等,已成为当今学术界和产业界研究的热点。
近年来,基于本征柔性材料组装以及刚性材料柔性化设计两种方式获得的柔性储能器件取得了很大进展。金属纤维(如铝、铜)、聚合物纤维(如聚吡咯、聚苯胺)和碳基材料(如碳纳米纤维、碳纳米管、石墨烯及其复合材料)等因具有本征柔性的特征,在柔性储能器件中扮演着重要角色。其他诸如钴酸锂、钛酸锂等无机刚性材料的脆性较大,需通过合理的结构设计实现柔性。此外,柔性储能系统还需具备高容量、高效率、轻薄、安全等综合性能来满足实际的应用需求。
本综述围绕本征和非本征柔性储能器件,探讨材料微观结构与器件宏观性能的构效关系,重点阐述各类柔性电极材料的制备方法、力学性能和电化学性能,并对未来柔性储能器件发展、电极材料设计面临的挑战提出了一些见解。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李一帆
刘宇航
孙晋蒙
吴乾鑫
龚昕
杜洪方
艾伟
黄维
关键词:  柔性电子  电化学储能  电极材料  本征柔性  非本征柔性    
Abstract: In light of the rapid development of electronic technologies, portable electronic devices are promoted to evolve with fascinating flexibility, mi-niaturization and intellectualization. Flexible electronics with the features of bent, folded, twisted, stretched and coordinated deformations are now the booming fields of research. As a crucial component of flexible electronic devices, the design of reliable energy storage systems has become the key challenges towards the applications of flexible electronics. Traditional energy storage devices are rigid, which is easy to break under applied deformations. Accordingly, the separation of electrode materials and current collector seriously deteriorates the electrochemical perfor-mances and even causes a short circuit, resulting in safety issues. To this end, flexible energy storage devices, such as flexible Li-ion batteries, flexible Li-S batteries and flexible lithium metal batteries, have gained paramount interests in academia and industry.
In recent years, great progress has been made in flexible energy storage devices based on intrinsic flexible materials assembly andrigid mate-rials flexible designs. Metal fibers (e.g., Al and Cu), polymer fibers (e.g., polypyrrole and polyaniline), and carbon-based materials (e.g., carbon nanofibers, carbon nanotubes and graphene) have so far been widely applied in flexible energy storage devices because of their intrinsic fle-xibility. While the other materials with the characteristics of brittleness, for example, lithium cobaltate and lithium titanate, can achieve a certain degree of flexibility after reasonable structural design. In addition, the practical application of flexible energy storage systems must meet the crite-rions in terms of high capacity, high efficiency, light weight, high safety and so on.
This review dedicates to discuss the relationships between the microstructure of nanomaterials and the performance of devices. The preparation methods, mechanical properties and electrochemical performances of current flexible systems are briefly overviewed. Moreover, instructive perspectives are provided so that to enlighten more insightful contributions to flexible electronics.
Key words:  flexible electronics    electrochemical energy storage    electrode materials    intrinsic flexibility    extrinsic flexibility
                    发布日期:  2020-01-15
ZTFLH:  TB34  
基金资助: 国家自然科学基金委青年项目(51902261);陕西省自然科学基础研究计划资助项目(2019JQ-025);中央高校基本科研业务费专项(31020180QD094;31020180QD116)
通讯作者:  iamwai@nwpu.edu.cn; iamwhuang@nwpu.edu.cn   
作者简介:  李一帆,2019年6月毕业于太原科技大学,获得材料成型及控制工程专业工学学士学位。现为西北工业大学柔性电子研究院硕士研究生,在艾伟教授的指导下从事新能源器件及柔性储能研究。
刘宇航,2018年6月毕业于兰州大学物理科学与技术学院,获得工学硕士学位。现为西北工业大学柔性电子研究院博士研究生,在黄维院士和艾伟教授的指导下开展高能锂离子/锂金属电池用碳纳米复合纤维电极的设计及研究。
艾伟,新加坡南洋理工大学理学博士,2018年3月加盟西北工业大学柔性电子研究院,任教授、博士研究生导师。目前担任柔性电子材料与器件工业和信息化部重点实验室学术秘书,先进能源研究所副所长,入选西北工业大学“翱翔海外学者引进计划”A类资助。主要研究方向:电化学能源材料与技术、新能源器件及其柔性智能。近年来,在Advanced MaterialsAdvanced Energy MaterialsAdvanced Functional Materials等国际著名学术期刊上发表SCI收录论文35篇,其中第一/通讯作者论文15篇,ESI高被引论文4篇、热点论文1篇,他引1700余次,H指数为18。申请国际国内发明专利8项,其中已授权中国发明专利3项。曾获得朗坤奖教金惟实(贡献)奖(2018年)、国家优秀自费留学生奖学金(2015年)等多项奖励。
黄维,中国科学院院士,俄罗斯科学院外籍院士、名誉博士,亚太材料科学院院士、东盟工程与技术科学院外籍院士、巴基斯坦科学院院士,西北工业大学常务副校长,教授、博导,有机电子学/柔性电子学家。教育部“长江学者”特聘教授,国家杰出青年科学基金获得者,“千人计划”(溯及既往)国家特聘专家,科技部“973”项目首席科学家。亚太地区工程组织联合会(FEIAP)主席、英国谢菲尔德大学名誉博士、英国皇家化学学会会士、美国光学学会会士、国际光学工程学会会士,中国科协常委,中国化学会副理事长,中国化工学会副理事长,Research、npj Flexible Electronics和Advanced Materials等国际权威学术杂志主编或(顾问)编委。长期从事有机光电、柔性电子等相关领域的研究,并取得了大量系统性、创新性的研究成果,以第一或通信作者身份在Nature、Nature Materials、Nature Photonics、Nature Nanotechnology、Nature Electronics、Nature Communications、Advanced Materials、Journal of the American Chemical Society等SCI学术期刊发表研究论文760余篇,H因子为121,国际同行引用70 000余次,是材料科学与化学领域全球高被引学者,获授权美国、新加坡和中国等国发明专利380余项,出版了《有机电子学》《生物光电子学》《有机薄膜晶体管材料器件和应用》《OLED显示技术》等学术专著。曾获国家自然科学奖二等奖和何梁何利基金科技进步奖等奖励,成果入围中国高等学校十大科技进展。
引用本文:    
李一帆,刘宇航,孙晋蒙,吴乾鑫,龚昕,杜洪方,艾伟,黄维. 柔性储能器件的电极设计研究进展[J]. 材料导报, 2020, 34(1): 1177-1186.
LI Yifan,LIU Yuhang,SUN Jinmeng,WU Qianxin,GONG Xin,DU Hongfang,AI Wei,HUANG Wei. Progress of Electrode Designs for Flexible Energy Storage Devices. Materials Reports, 2020, 34(1): 1177-1186.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110021  或          http://www.mater-rep.com/CN/Y2020/V34/I1/1177
1 Chen X,Liu B,Zhong C,et al. Advanced Energy Materials, 2017, 7(18), 1700779.
2 Park M,Park Y,Chen X,et al.Advanced Materials, 2016, 28(13), 2556.
3 Koo M,Park K I,Lee S H,et al.Nano Letters, 2012, 12(9), 4810.
4 Sabatier J,Aoun M,Oustaloup A,et al.Signal Processing, 2006, 86(10), 2645.
5 Lu L,Han X,Jianqiu L,et al.Journal of Power Sources, 2013, 226, 272.
6 Kim D K,Muralidharan P,Lee H W,et al.Nano Letters, 2008, 8(11), 3948.
7 Zhang L L,Zhao X S.Chemical Society Reviews, 2009, 38(9), 2520.
8 Frackowiak E.Physical Chemistry Chemical Physics, 2007, 9(15), 1774.
9 Wang L,Fu X,He J,et al.Advanced Materials, DOI: 10.1002/adma.201901971.
10 Mo F,Liang G,Huang Z,et al.Advanced Materials, DOI: 10.1002/adma.201902151.
11 Zhu Y H,Yang X Y,Liu T,et al.Advanced Materials, DOI: 10.1002/adma.201901961.
12 Kwon Y H,Woo S W,Jung H R,et al.Advanced Materials, 2012, 24(38), 5192.
13 Pu X,Li L,Song H,et al.Advanced Materials, 2015, 27(15), 2472.
14 Seng K,Liu J,Guo Z,et al.Electrochemistry Communications 2011, 13(5), 383.
15 Dong X,Chen L,Su X,et al.Angewandte Chemie-International Edition, 2016, 55(26), 7474.
16 Gao Z,Zhang Y,Song N,et al.Electrochimica Acta, 2017, 246, 507.
17 Sun Q,Fang X,Weng W,et al.Angewandte Chemie-International Edition, 2015, 54(36), 10539.
18 Wang C,Wang X,Yang Y,et al.Nano Letters, 2015, 15(3), 1796.
19 Zhou J,Li X,Yang C,et al.Advanced Materials, 2019, 31(3), 1804439.
20 Lin D,Liu Y,Liang Z,et al.Nature Nanotechnology, 2016, 11(7), 626.
21 Liu Y,Lin D,Yuen P Y,et al.Advanced Materials, 2017, 29(10), 1605531.
22 He Y,Chen W,Li X,et al.ACS Nano, 2013, 7(1), 174.
23 Horng Y Y,Lu Y C,Hsu Y K,et al.Journal of Power Sources, 2010, 195(13), 4418.
24 Shown I,Ganguly A,Chen L C,et al.Energy Science & Engineering, 2015, 3(1), 2.
25 Xiong Z Y,Liao C,Han W,et al.Advanced Materials, 2015, 27(30), 4469.
26 Zhang Y,Zhao Y,Ren J,et al. Advanced Materials, 2016, 28(22), 4524.
27 Liu F,Song S,Xue D,et al.Advanced Materials, 2012, 24(8), 1089.
28 Wan Y,Yang Z,Xiong G,et al.Journal of Power Sources, 2015, 294, 414.
29 Ren J,Li L,Chen C,et al.Advanced Materials, 2013, 25(8), 1155.
30 Wang J G,Jin D,Zhou R,et al.ACS Nano, 2016, 10(6), 6227.
31 Lin H,Weng W,Ren J,et al.Advanced Materials, 2014, 26(8), 1217.
32 Xu F,Zhu Y.Advanced Materials, 2012, 24(37), 5117.
33 Lee P,Lee J,Lee H,et al.Advanced Materials, 2012, 24(25), 3326.
34 Song C,Li Y,Li H,et al.Nano Energy, 2019, 60, 285.
35 Snook G A,Kao P,Best A S.Journal of Power Sources, 2011, 196(1), 1.
36 Wang J Z,Chou S L,Liu H,et al. Materials Letters, 2009, 63(27), 2352.
37 Wang H,Lin J,Shen Z X.Journal of Science: Advanced Materials and Devices, 2016, 1(3), 225.
38 Zhao Q,Wang G,Yan K,et al.Journal of Applied Polymer Science, 2015, 132(41), 42549.
39 Gandhi M R,Murray P,Spinks G M,et al.Synthetic Metals, 1995, 73(3), 247.
40 Wang J Z,Chou S L,Chen J,et al.Electrochemistry Communications, 2008, 10(11), 1781.
41 Veeraraghavan B,Paul J,Haran B,et al.Journal of Power Sources, 2002, 109(2), 377.
42 Wang D,Wang X,Yang X,et al.Journal of Power Sources, 2015, 293, 89.
43 Xiao L,Cao Y,Xiao J,et al.Advanced Materials, 2012, 24(9), 1176.
44 Sun J,Huang Y,Fu C,et al.Journal of Materials Chemistry A, 2016, 4(38), 14877.
45 Weng W,Yang J,Zhang Y,et al.Advanced Materials, DOI: 10.1002/adma.201902301.
46 Kim B,Koncar V,Devaux E,et al.Synthetic Metals, 2004, 146(2), 167.
47 Chowdhury S A,Saha M C,Patterson S,et al.Advanced Materials Techno-logies, 2019, 4(1), 1800398.
48 Hou M,Xu M,Li B.ACS Sustainable Chemistry & Engineering, 2018, 6(3), 2983.
49 Miao Y E,Huang Y,Zhang L,et al.Nanoscale, 2015, 7(25), 11093.
50 Chen R,Hu Y,Shen Z,et al.Journal of Materials Chemistry A, 2017, 5(25), 12914.
51 Baughman R H,Zakhidov A A,De Heer W A.Science, 2002, 297(5582), 787.
52 Huang L,Guan Q,Cheng J,et al.Chemical Engineering Journal, 2018, 334, 682.
53 Toprakci O,Toprakci H A,Ji L,et al.ACS Applied Materials & Interfaces, 2012, 4(3), 1273.
54 Hu L,Wu H,La Mantia F,et al.ACS Nano, 2010, 4(10), 5843.
55 Amin K,Meng Q,Ahmad A,et al.Advanced Materials, 2018, 30(4), 1703868.
56 Pan Z,Ren J,Guan G,et al.Advanced Energy Materials, 2016, 6(11), 1600271.
57 Yang Y,Yang X,Chen S,et al.ACS Applied Materials & Interfaces, 2017, 9(27), 22819.
58 Ren J,Zhang Y,Bai W,et al.Angewandte Chemie-International Edition, 2014, 53(30), 7864.
59 Novoselov K S,Geim A K,Morozov S V,et al.Science, 2004, 306(5696), 666.
60 Liang M,Zhi L.Journal of Materials Chemistry, 2009, 19(33), 5871.
61 Dai C,Sun G,Hu L,et al.InfoMat, DOI: 10.1002/inf2.12039.
62 Hoshide T,Zheng Y,Hou J,et al.Nano Letters, 2017, 17(6), 3543.
63 Wei D,Haque S,Andrew P,et al.Journal of Materials Chemistry A, 2013, 1(9), 3177.
64 Wang Y,Zheng W,Zhang P,et al.Journal of Materials Science, 2019, 54(18), 11991.
65 Naguib M,Mochalin V N,Barsoum M W,et al.Advanced Materials, 2014, 26(7), 992.
66 Yang Q,Wang Y,Li X,et al.Energy & Environmental Materials, 2018, 1(4), 183.
67 Zhao Q,Zhu Q,Miao J,et al.Nanoscale, 2019, 11(17), 8442.
68 Tang H,Li W,Pan L,et al.Advanced Science, 2018, 5(9), 1800502.
69 Tian Y,An Y,Feng J.ACS Applied Materials & Interfaces, 2019, 11(10), 10004.
70 Cranford S W,Buehler M J.Carbon, 2011, 49(13), 4111.
71 Li Y,Xu L,Liu H,et al. Chemical Society Reviews, 2014, 43(8), 2572.
72 He J,Wang N,Cui Z,et al.Nature Communications, 2017, 8(1), 1172.
73 Xue L,Savilov S V,Lunin V V,et al.Advanced Functional Materials, 2018, 28(7), 1705836.
74 Zhang M,Lu R,Yuan H,et al.ACS Applied Materials & Interfaces, 2019, 11(23), 20873.
75 Lu B,Liu J,Hu R,et al.Energy Storage Materials, 2018, 14, 118.
76 Wang X,Li G,Hassan F M,et al.Journal of Materials Chemistry A, 2015, 3(7), 3962.
77 Botas C,Carriazo D,Singh G,et al.Journal of Materials Chemistry A, 2015, 3(25), 13402.
78 Chen Z,Ren W,Gao L,et al.Nature Materials, 2011, 10(6), 424.
79 Qian G,Zhu B,Liao X,et al. Advanced Materials, 2018, 30(12), 1704947.
80 Liao X,Shi C,Wang T,et al.Advanced Energy Materials, 2019, 9(4), 1802998.
81 Weng W,Sun Q,Zhang Y,et al.Advanced Materials, 2015, 27(8), 1363.
[1] 林进义,安翔,白鲁冰,徐曼,韦传新,解令海,林宗琼,黄维. 柔性高分子半导体:力学性能和设计策略[J]. 材料导报, 2020, 34(1): 1001-1008.
[2] 崔铮. 柔性混合电子——基于印刷加工实现柔性电子制造[J]. 材料导报, 2020, 34(1): 1009-1013.
[3] 陆骐峰,孙富钦,王子豪,张珽. 柔性人工突触:面向智能人机交互界面和高效率神经网络计算的基础器件[J]. 材料导报, 2020, 34(1): 1022-1049.
[4] 骆泽纬,田希悦,范基辰,杨鑫,樊天意,王超伦,吴幸,褚君浩. 智能时代下的新型柔性压阻传感器[J]. 材料导报, 2020, 34(1): 1069-1079.
[5] 马飞祥,丁晨,凌忠文,袁伟,孟秀清,苏文明,崔铮. 导电织物制备方法及应用研究进展[J]. 材料导报, 2020, 34(1): 1114-1125.
[6] 宋江,王腾蛟,冯涛,CHAN Siew Yin,荣帆,李鹏,黄维. 柔性电子在糖尿病诊断、治疗及护理中的应用综述[J]. 材料导报, 2020, 34(1): 1126-1134.
[7] 刘建伟,王嘉楠,朱蕾,延卫. 柔性锂硫电池材料:综述[J]. 材料导报, 2020, 34(1): 1155-1168.
[8] 李灵桐, 臧晓蓓, 曹宁. 锌锰二次电池研究进展[J]. 材料导报, 2019, 33(19): 3210-3218.
[9] 王瑞平,袁长龙,陶劲松. 纳米纤维素改性及其在柔性电子方面的应用[J]. 材料导报, 2019, 33(17): 2949-2957.
[10] 张传涛, 邢宝林, 黄光许, 张双杰, 张传祥, 史长亮, 朱阿辉, 姚友恒, 张青山. 水热炭化-KOH活化制备核桃壳活性炭电极材料的研究[J]. 《材料导报》期刊社, 2018, 32(7): 1088-1093.
[11] 吴亚鸽, 冉奋. 纤维素基多孔碳膜的制备及其电化学性能研究[J]. 《材料导报》期刊社, 2018, 32(5): 715-718.
[12] 王赫, 王洪杰, 王闻宇, 金欣, 林童. 聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 730-734.
[13] 苏婷, 宋永辉, 张珊, 田宇红, 兰新哲. 硝酸活化时间对煤基电极材料结构及性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 528-532.
[14] 张苗苗,刘旭燕,钱炜. 聚吡咯电极材料在超级电容器中的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 378-383.
[15] 黄嘉平, 崔海坡, 宋成利, 周宇. 不同材料对双极高频电刀温度场的影响[J]. 材料导报, 2018, 32(24): 4319-4323.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed