Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (5): 730-734    https://doi.org/10.11896/j.issn.1005-023X.2018.05.007
  材料综述 |
聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展
王赫1, 王洪杰1, 王闻宇1, 金欣1, 林童1, 2
1 天津工业大学省部共建分离膜与膜过程国家重点实验室,天津 300387;
2 澳大利亚迪肯大学前沿纤维研究与创新中心,吉朗 VIC 3217
Research Progress in Polyacrylonitrile (PAN) Based Carbon Nanofibers Electrode Materials for Supercapacitor
WANG He1, WANG Hongjie1, WANG Wenyu1, JIN Xin1, LIN Tong1,2
1 State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387;
2 Australian Future Fibres Research and Innovation Center, Deakin University, Geelong VIC 3217
下载:  全 文 ( PDF ) ( 1138KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超级电容器是一种介于电池和传统物理电容器之间的新型环保储能器件,近年来得到了研究者的广泛关注。电极材料是超级电容器的核心部分,因此具有更高的研究价值。聚丙烯腈基碳纳米纤维因具有良好的静电纺丝性、较高的碳化产率、优异的纳米结构、超高的比表面积以及优良的导电性和稳定性,已经成为超级电容器电极材料的研究热点。本文主要介绍了聚丙烯腈基交联结构和多孔结构碳纳米纤维电极材料,元素掺杂电极材料以及与碳材料、导电聚合物、金属氧化物复合的电极材料,并对聚丙烯腈基碳纳米纤维电极材料未来的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王赫
王洪杰
王闻宇
金欣
林童
关键词:  超级电容器  储能器件  电极材料  聚丙烯腈  碳纳米纤维    
Abstract: Supercapacitor is a kind of novel environmental friendly energy storage device between battery and traditional physical capa-citor. Recently, supercapacitor has attracted widely attention from researchers. Electrode material is the core component of the supercapacitor, therefore it has higher research value. Polyacrylonitrile (PAN) based carbon nanofibers have become the hot issue of research in supercapacitor electrode materials due to their good electrospinning property, high carbonization yield, excellent nanostructure, ultrahigh specific surface area, outstanding electrical conductivity and stability. In this review, the polyacrylonitrile (PAN) based carbon nanofibers electrode materials with crosslinked structure and porous structure, electrode materials doped by other element and composite electrode materials with carbon materials, conductive polymer or metal oxide are mainly introduced. The future research directions of polyacrylonitrile based carbon nanofibers electrode materials are also proposed.
Key words:  supercapacitor    energy storage device    electrode material    polyacrylonitrile    carbon nanofiber
               出版日期:  2018-03-10      发布日期:  2018-03-10
ZTFLH:  O469  
基金资助: 国家自然科学基金(51103101;51573136);中国博士后科学基金(2011M500525;20110490785);天津市自然科学基金(12JCYBJC17800;16JCTPJC45100);天津市科技计划项目(课题)(15PTSYJC00230;15PTSYJC00240;15PTSYJC00250)
通讯作者:  王闻宇:通信作者,男,1972年生,副教授,主要从事新型功能纤维材料的研究 E-mail:wwy-322@126.com   
作者简介:  王赫:男,1987年生,博士研究生,研究方向为碳纳米纤维的制备及其在超级电容器中的应用 E-mail:owenwanghe@sina.com
引用本文:    
王赫, 王洪杰, 王闻宇, 金欣, 林童. 聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 730-734.
WANG He, WANG Hongjie, WANG Wenyu, JIN Xin, LIN Tong. Research Progress in Polyacrylonitrile (PAN) Based Carbon Nanofibers Electrode Materials for Supercapacitor. Materials Reports, 2018, 32(5): 730-734.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.05.007  或          http://www.mater-rep.com/CN/Y2018/V32/I5/730
1 Chen S, He S, Hou H. Electrospinning technology for applications in supercapacitors[J].Current Organic Chemistry,2013,71:1402.
2 Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J].Chemical Society Reviews,2009,38(9):2520.
3 Conway B E. Transition from “supercapacitor” to “battery” beha-vior in electrochemical energy storage[J].Journal of the Electrochemical Society,1991,138(6):1539.
4 Zheng J, Huang J, Jow T. The limitations of energy density for electrochemical capacitors[J].Journal of the Electrochemical Society,1997,144(6):2026.
5 Ishikawa M, Morita M, Ihara M, et al. Electric Double-layer capa-citor composed of activated carbon fiber cloth electrodes and solid polymer electrolytes containing alkylammonium salts[J].Journal of the Electrochemical Society,1994,141(7):1730.
6 Simon P, Gogotsi Y. Materials for electrochemical capacitors[J].Nature Materials,2008,7(11):845.
7 Li D, Xia Y. Electrospinning of nanofibers: Reinventing the wheel?[J].Advanced Materials,2004,16(14):1151.
8 Nataraj S K, Yang K S, Aminabhavi T M. Polyacrylonitrile-based nanofibers—A state-of-the-art review[J].Progress in Polymer Science,2012,37(3):487.
9 Zussman E, Chen X, Ding W, et al. Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers[J].Carbon,2005,43(10):2175.
10 Cheng K K, Hsu T C, Kao L H. Carbon nanofibers prepared by a novel co-extrusion and melt-spinning of phenol formaldehyde-based core/sheath polymer blends[J].Journal of Materials Science,2011,46(6):1870.
11 Ono H, Oya A. Preparation of highly crystalline carbon nanofibers from pitch/polymer blend[J].Carbon,2006,44(4):682.
12 Luo W, Schardt J, Bommier C, et al. Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargea-ble sodium-ion batteries[J].Journal of Materials Chemistry A,2013,1(36):10662.
13 Yusof N, Ismail A F. Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: A review[J].Journal of Analytical & Applied Pyrolysis,2012,93:1.
14 Hu C C, Lin J Y. Effects of the loading and polymerization temperature on the capacitive performance of polyaniline in NaNO3[J].Electrochimica Acta,2002,47(25):4055.
15 Lee H Y, Goodenough J B. Supercapacitor behavior with KCl electrolyte[J].Journal of Solid State Chemistry,1999,144(1):220.
16 Lee H Y, Goodenough J B. Ideal supercapacitor behavior of amorphous V2O5·nH2O in potassium chloride (KCl) aqueous solution[J].Journal of Solid State Chemistry,1999,148(1):81.
17 Morita M, Goto M, Matsuda Y. Ethylene carbonate-based organic electrolytes for electric double layer capacitors[J].Journal of Applied Electrochemistry,1992,22(10):901.
18 Patil S, Mahajan J R, More M A, et al. Influence of supporting electrolyte on the electrochemical synthesis of poly(o-methoxyaniline) thin films[J].Materials Letters,1999,39(5):298.
19 Cheikh Z B, Kamel F E, Gallot-Lavallée O, et al. Hydrogen doped BaTiO3, films as solid-state electrolyte for micro-supercapacitor applications[J].Journal of Alloys & Compounds,2017,721:276.
20 Liu X, Osaka T. Properties of electric double-layer capacitors with various polymer gel electrolytes[J].Journal of the Electrochemical Society,1997,144(9):3066.
21 Ingram M D, Pappin A J, Delalande F, et al. Development of electrochemical capacitors incorporating processable polymer gel electrolytes[J].Electrochimica Acta,1998,43(10):1601.
22 Yang Hui, Zhang Milin, Chen Ye. Preparation and studies on the membrane material of supercapacitors[J].Applied Science and Technology,2006,33(7):51(in Chinese).
杨惠,张密林,陈野.超级电容器隔膜材料的制备与研究[J].应用科技,2006,33(7):51.
23 Liu Hao. Research of diaphragms and electrolyte for the super capa-citor[D].Changchun:Jilin University,2015(in Chinese).
刘浩.超级电容器隔膜与电解质的研究[D].长春:吉林大学,2015.
24 Chang J K, Lee M T, Tsai W T. In situ Mn K-edge X-ray absorption spectroscopic studies of anodically deposited manganese oxide with relevance to supercapacitor applications[J].Journal of Power Sources,2007,166(2):590.
25 Lai C C, Lo C T. Preparation of nanostructural carbon nanofibers and their electrochemical performance for supercapacitors[J].Electrochimica Acta,2015,183:85.
26 Liu C, Tan Y, Liu Y, et al. Microporous carbon nanofibers prepared by combining electrospinning and phase separation methods for supercapacitor[J].Journal of Energy Chemistry,2016,25(4):587.
27 Zhang L, Jiang Y, Wang L, et al. Hierarchical porous carbon nanofibers as binder-free electrode for high-performance supercapacitor[J].Electrochimica Acta,2016,196:189.
28 Kim C H, Kim B H. Zinc oxide/activated carbon nanofiber compo-sites for high-performance supercapacitor electrodes[J].Journal of Power Sources,2015,274:512.
29 Niu H, Zhang J, Xie Z, et al. Preparation, structure and supercapacitance of bonded carbon nanofiber electrode materials[J].Carbon,2011,49(7):2380.
30 Xue G, Zhong J, Cheng Y, et al. Facile fabrication of cross-linked carbon nanofiber via directly carbonizing electrospun polyacrylonitrile nanofiber as high performance scaffold for supercapacitors[J].Electrochimica Acta,2016,215:29.
31 Xu Q, Yu X, Liang Q, et al. Nitrogen-doped hollow activated carbon nanofibers as high performance supercapacitor electrodes[J].Journal of Electroanalytical Chemistry,2015,739:84.
32 Yan X, Liu Y, Fan X, et al. Nitrogen/phosphorus co-doped nonporous carbon nanofibers for high-performance supercapacitors[J].Journal of Power Sources,2014,248:745.
33 Huang K, Yao Y, Yang X, et al. Fabrication of flexible hierarchical porous nitrogen-doped carbon nanofiber films for application in bin-der-free supercapacitors[J].Materials Chemistry & Physics,2016,169:1.
34 Geim A K, Novoselov K S. The rise of graphene[J].Nature Mate-rials,2007,6(3):183.
35 Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J].Nano Letters,2008,8(3):902.
36 Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321(5887):385.
37 Pumera M. Electrochemistry of graphene: New horizons for sensing and energy storage[J].The Chemical Record,2009,9(4):211.
38 Kim S Y, Yang K, Kim B H. Enhanced electrical capacitance of he-teroatom-decorated nanoporous carbon nanofiber composites containing graphene[J].Electrochimica Acta,2014,137(8):781.
39 Zhou Z, Wu X F. Graphene-beaded carbon nanofibers for use in supercapacitor electrodes: Synthesis and electrochemical characterization[J].Journal of Power Sources,2013,222(2):410.
40 Kim B H, Yang K S, Ferraris J P. Highly conductive, mesoporous carbon nanofiber web as electrode material for high-performance supercapacitors[J].Electrochimica Acta,2012,75(4):325.
41 Hsu H C, Wang C H, Chang Y C, et al. Graphene oxides and carbon nanotubes embedded in polyacrylonitrile-based carbon nanofibers used as electrodes for supercapacitor[J].Journal of Physics and Chemistry of Solids,2015,85:62.
42 Cheng Y, Huang L, Xiao X, et al. Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode[J].Nano Energy,2015,15:66.
43 Jang J, Bae J, Choi M, et al. Fabrication and characterization of polyaniline coated carbon nanofiber for supercapacitor[J].Carbon,2005,43(13):2730.
44 Ju Y W, Choi G R, Jung H R, et al. Electrochemical properties of electrospun PAN/MWCNT carbon nanofibers electrodes coated with polypyrrole[J].Electrochimica Acta,2008,53(19):5796.
45 Yao B, Yuan L, Xiao X, et al. Paper-based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes[J].Nano Energy,2013,2(6):1071.
46 Zhang J, Chen P, Oh B H, et al. High capacitive performance of flexible and binder-free graphene-polypyrrole composite membrane based on in situ reduction of graphene oxide and self-assembly[J].Nanoscale,2013,5(20):9860.
47 Kim M, Lee C, Jang J. Fabrication of highly flexible, scalable, and high-performance supercapacitors using polyaniline/reduced graphene oxide film with enhanced electrical conductivity and crystalli-nity[J].Advanced Functional Materials,2014,24(17):2489.
48 Yang C, Shen J, Wang C, et al. All-solid-state asymmetric supercapacitor based on reduced graphene oxide/carbon nanotube and carbon fiber paper/polypyrrole electrodes[J].Journal of Materials Chemistry A,2014,2(5):1458.
49 Ning P, Duan X, Ju X, et al. Facile synthesis of carbon nanofibers/MnO2 nanosheets as high-performance electrodes for asymmetric supercapacitors[J].Electrochimica Acta,2016,210:754.
50 Lee D G, Kim J H, Kim B H. Hierarchical porous MnO2/carbon nanofiber composites with hollow cores for high-performance supercapacitor electrodes: Effect of poly(methyl methacrylate) concentration[J].Electrochimica Acta,2016,200:174.
51 Kim B H, Yang K S, Yang D J. Electrochemical behavior of activated carbon nanofiber-vanadium pentoxide composites for double-la-yer capacitors[J].Electrochimica Acta,2013,109(11):859.
[1] 马攀龙, 张忠厚, 韩琳, 陈荣源. 交联剂和无纺布增强聚丙烯腈凝胶聚合物电解质膜的研究[J]. 材料导报, 2019, 33(z1): 457-461.
[2] 杜伟, 王小宁, 鞠翔宇, 孙学勤. 用于超级电容器电极的柚子皮/聚苯胺原位复合碳化材料[J]. 材料导报, 2019, 33(4): 719-723.
[3] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[4] 黄国庆, 白震媛, 陈兆文, 刘琦, 王君. 铀(Ⅵ)在氧化锌修饰聚丙烯腈纤维上的吸附行为[J]. 材料导报, 2019, 33(14): 2436-2443.
[5] 刘明, 徐洪峰, 周亚男, 郝宇. 金属有机框架化合物Zn4O(BDC)3材料的制备、结构及电容性能[J]. 材料导报, 2019, 33(12): 1955-1958.
[6] 刘敏敏, 蔡超, 张志杰, 刘睿. 纳米碳材料负载过渡金属氧化物用作超级电容器电极材料[J]. 材料导报, 2019, 33(1): 103-109.
[7] 张传涛, 邢宝林, 黄光许, 张双杰, 张传祥, 史长亮, 朱阿辉, 姚友恒, 张青山. 水热炭化-KOH活化制备核桃壳活性炭电极材料的研究[J]. 《材料导报》期刊社, 2018, 32(7): 1088-1093.
[8] 冯婷婷, 刘梁森, 马天帅, 徐志伟, 李静, 傅宏俊, 匡丽赟, 李英琳. 伽马射线辐照改性聚丙烯腈原丝及聚丙烯腈基碳纤维的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1114-1121.
[9] 吴亚鸽, 冉奋. 纤维素基多孔碳膜的制备及其电化学性能研究[J]. 《材料导报》期刊社, 2018, 32(5): 715-718.
[10] 王辉, 崔梦冰, 闫冬冬, 陈改荣. 添加剂对聚丙烯腈膜结构和性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 555-558.
[11] 苏婷, 宋永辉, 张珊, 田宇红, 兰新哲. 硝酸活化时间对煤基电极材料结构及性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 528-532.
[12] 张苗苗,刘旭燕,钱炜. 聚吡咯电极材料在超级电容器中的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 378-383.
[13] 黄嘉平, 崔海坡, 宋成利, 周宇. 不同材料对双极高频电刀温度场的影响[J]. 材料导报, 2018, 32(24): 4319-4323.
[14] 杨贺珍, 冉奋. 超级电容器电解质研究进展[J]. 材料导报, 2018, 32(21): 3697-3705.
[15] 何云龙, 沈沪江, 王炜, 袁慧慧. 柔性染料敏化太阳能电池和柔性钙钛矿太阳能电池关键电极材料研究进展[J]. 材料导报, 2018, 32(21): 3677-3688.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed