Please wait a minute...
材料导报  2024, Vol. 38 Issue (14): 23110252-6    https://doi.org/10.11896/cldb.23110252
  无机非金属及其复合材料 |
NiFe2O4/rGO电极材料的制备及电催化HMF氧化性能研究
王洪雷1,*, 牛彩云2, 朱宏跃1, 李晓明1, 周丹1, 孙志刚3, 胡季帆3, 杨昌平3,*
1 太原科技大学化学工程与技术学院,太原 030024
2 中北大学化学化工学院,太原 030051
3 太原科技大学材料科学与工程学院,太原 030024
Preparation of NiFe2O4/rGO Electrode Material and Its Electrocatalytic Performance for HMF Oxidation
WANG Honglei1,*, NIU Caiyun2, ZHU Hongyue1, LI Xiaoming1, ZHOU Dan1, SUN Zhigang3, HU Jifan3, YANG Changping3,*
1 School of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China
2 School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
3 School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 8032KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用五羟甲基糠醛(HMF)电合成的2,5-呋喃二甲酸(FDCA)具有与对苯二甲酸相似的结构和性质,为开发可降解性塑料、减少白色污染提供可能。利用CO2激光成功合成了NiFe2O4/rGO电极材料,其微观形貌呈纳米颗粒镶嵌的氧化石墨烯结构。原位拉曼光谱表明,与Fe5O12/rGO电极材料相比,在HMF电催化氧化过程中NiFe2O4/rGO表面重构为NiOOH和FeOOH物种,证实了Ni的加入使材料更易发生表面重构。表面重构的NiFe2O4/rGO电极材料在100 mA· cm-2时过电位降低至26 mV,且较制氧反应(OER)过电位降低约182 mV。表面重构后的电极材料拥有更大的比表面积,促进了反应物与电极材料的接触。反应物的转化率、目标产物的选择性及法拉第效率分别为99.8%、99.3%和87.6%。本研究为元素加入促进催化材料表面重构进而提高HMF的电催化氧化活性提供了有效途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王洪雷
牛彩云
朱宏跃
李晓明
周丹
孙志刚
胡季帆
杨昌平
关键词:  电催化  CO2激光  NiFe2O4/rGO电极材料  表面重构    
Abstract: The 2,5-furandicarboxylic acid (FDCA) synthesized by electro synthesis of 5-hydroxymethylfurfural (HMF) has a structure and properties similar to terephthalic acid, providing the possibility for developing biodegradable plastics and reducing white pollution. The NiFe2O4/rGO electrode material was successfully synthesized using CO2 laser, and its microstructure presents a nano particle embedded graphene oxide structure. In situ Raman spectroscopy showed that compared with the Fe5O12/rGO electrode material, the NiFe2O4/rGO surface was reconstructed into NiOOH and FeOOH species during the HMF electrocatalytic oxidation process, confirming that the addition of Ni makes the material more prone to surface reconstruction. The surface reconstructed NiFe2O4/rGO electrode material showed a decrease in overpotential to 26 mV at 100 mA· cm-2, and a decrease of approximately 182 mV compared to the oxygen production reaction (OER) overpotential. The electrode material after surface reconstruction has a larger specific surface area, which promotes the contact between reactants and electrode material. The conversion rate of reactants, selectivity of target products, and Faraday efficiency were 99.8%, 99.3%, and 87.6%, respectively. This study provides an effective approach for promoting surface reconstruction of catalytic materials through the addition of elements, thereby enhancing the electrocatalytic oxidation activity of HMF.
Key words:  electrocatalysis    CO2 laser    NiFe2O4/rGO electrode material    surface reconstruction
出版日期:  2024-07-25      发布日期:  2024-08-12
ZTFLH:  O646.542  
基金资助: 山西省应用基础研究计划(202203021222185);太原科技大学博士科研启动基金(20222092);太原科技大学留晋博士优秀奖励基金(20232058);太原科技大学大学生创新创业项目(XJ2023058)
通讯作者:  * 王洪雷,太原科技大学化学工程与技术学院讲师。2022年8月获得大连理工大学博士学位,主要从事微纳材料的合成与表征及其在力、电、磁等作用下的表面行为,并应用与电合成高附加值产品方面。先后在Advanced Energy Materials、Nano Energy、Applied Catalysis B-Environmental、Che-mical Engineering Journal、Journal of Materials Chemistry A、ChemSusChem等期刊发表SCI论文10余篇,授权国家发明专利1项。wanghonglei89@tyust.edu.cn
杨昌平,太原科技大学材料科学与工程学院特聘教授,教育部新世纪优秀人才。1998年7月毕业于中国科学院物理研究所,获理学博士学位。目前主要从事凝聚态物理、磁电功能材料和电化学能源材料与器件的科学研究和技术开发工作,撰写科技专著5部,获批国际发明专利3项,国内发明专利10余项,发表科技论文200余篇,获湖北省自然科学奖励1项。2019074@tyust.edu.cn   
引用本文:    
王洪雷, 牛彩云, 朱宏跃, 李晓明, 周丹, 孙志刚, 胡季帆, 杨昌平. NiFe2O4/rGO电极材料的制备及电催化HMF氧化性能研究[J]. 材料导报, 2024, 38(14): 23110252-6.
WANG Honglei, NIU Caiyun, ZHU Hongyue, LI Xiaoming, ZHOU Dan, SUN Zhigang, HU Jifan, YANG Changping. Preparation of NiFe2O4/rGO Electrode Material and Its Electrocatalytic Performance for HMF Oxidation. Materials Reports, 2024, 38(14): 23110252-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23110252  或          http://www.mater-rep.com/CN/Y2024/V38/I14/23110252
1 Xu C, Paone E, Rodríguez-Padrón D, et al. Chemical Society Reviews, 2020, 49(13), 4273.
2 You B, Sun Y. Accounts of Chemical Research, 2018, 51(7), 1571.
3 van Putten R J, van der Waal J C, de Jong E, et al. Chemical Reviews, 2013, 113(3), 1499.
4 Hou Y C, He Z S, Ren S X, et al. Acta Physico-Chimica Sinica, 2023, 39(9), 2212065 (in Chinese).
侯玉翠,何卓森,任树行,等. 物理化学学报,2023, 39(9), 2212065.
5 Motagamwala A H, Won W, Sener C, et al. Science Advances, 2018, 4(1), eaap9722.
6 Zhao H B, Holladay J E, Brown H, et al. Science, 2007, 316(5831), 1597.
7 Li M R, Song Y J, Wan X, et al. Acta Physico-Chimica Sinica, 2024, 40(9), 2306007 (in Chinese).
李美然,宋英杰,万鑫,等. 物理化学学报,2024, 40(9), 2306007.
8 Xu C, Paone E, Rodriguez-Padron D, et al. Chemical Society Reviews, 2020, 49(13), 4273.
9 Wang H L, Zhou Y M, Tao S Y. Applied Catalysis B: Environment and Energy, 2022, 315, 121588.
10 Zhao G C, Hai G T, Zhou P Y, et al. Advanced Functional Materials, 2023, 33(14), 2213170.
11 Wang H L, Niu C Y, Liu W, et al. Applied Catalysis B: Environment and Energy, 2024, 340, 123249.
12 Hayashi E, Yamaguchi Y, Kamata K, et al. Journal of American Chemical Society, 2019, 141(2), 890.
13 Kim M, Su Y Q, Fukuoka A, et al. Angewandte Chemie International Edition, 2018, 57(27), 8235.
14 Villa A, Schiavoni M, Campisi S, et al. ChemSusChem, 2013, 6(4), 609.
15 You B, Liu X, Jiang N, et al. Journal of the American Chemical Society, 2016, 138(41), 13639.
16 Wang H L, Li C, An J T, et al. Journal of Materials Chemistry A, 2021, 9(34), 18421.
17 Zhang N, Zou Y, Tao L, et al. Angewandte Chemie International Edition, 2019, 58(44), 15895.
18 Wang H L, Zhang J W, Tao S Y, et al. Chemical Engineering Journal, 2022, 444, 136693.
19 Gao L K, Cui X, Wang Z W, et al. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(7), e2023421118.
20 Luo P, Wang H, Wen X, et al. Advanced Energy Materials, 2024,14(9), 2302532.
21 Liu H, Xie R, Wang Q, et al. Advanced Science, 2023, 10(13) 2207128.
22 Zheng D Y, Jin H H, Ji P X. Materials Reports, 2023, 37(18), 22040230 (in Chinese).
郑德勇,晋慧慧,姬鹏霞,等. 材料导报,2023, 37(18), 22040230.
23 Liang C, Zou P, Nairan A, et al. Energy & Environmental Science, 2020, 13(1), 86.
24 He J, Zhou X, Xu P, et al. Nano Energy, 2021, 80, 105540.
25 Li Y B, Liu Y P, Wang J, et al. ACS Catalysis, 2018, 8(1), 1.
26 Qi J, Chen M X, Zhang W, et al. Chinese Journal of Catalysis, 2022, 43(07), 1955.
27 Jiang J, Sun F F, Zhou S, et al. Nature Communication, 2018, 9, 2885.
28 Wei B B, Shang C Q, Wang X, et al. Small, 2020, 16, 2002789.
29 Li X, Wu H, Elshahawy A M, et al. Advanced Functional Materials, 2018, 28(20), 1800036.
[1] 孙亚洲, 徐沙, 邹金含, 吴智华, 谢顺吉. 二氧化碳电催化还原酸性体系研究进展[J]. 材料导报, 2024, 38(8): 23040216-6.
[2] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[3] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[4] 陈美玲, 孙艳芝, 吴玉锋, 袁浩然, 潘军青. 废轮胎裂解炭黑在能源存储及转换中的应用进展[J]. 材料导报, 2024, 38(8): 23100011-11.
[5] 贾飞宏, 卫学玲, 包维维, 邹祥宇. MoS2/Ni3S2/NF双功能电催化剂用于高效全水解[J]. 材料导报, 2024, 38(4): 22040365-7.
[6] 盛雄, 李邦兴, 陆顺, 陆文强, 李晓锋, 康帅. 二维材料用于电化学法制备过氧化氢的研究进展[J]. 材料导报, 2024, 38(11): 22120169-13.
[7] 黄顺元, 刘律飞, 顾韵洁, 葛帅辰, 李静莎. 泡沫镍负载CuO纳米花的构筑及电化学硝酸根还原制氨的性能[J]. 材料导报, 2024, 38(10): 23010042-7.
[8] 庄明兴, 卡盖·索音图, 付文英, 司司, 余添玉, 杨俊东, 章剑, 梁宇欣, 赵新生, 魏永生. 硼/磷掺杂电解水析氢金属催化剂的研究现状与进展[J]. 材料导报, 2023, 37(S1): 22080121-11.
[9] 赵帅凯, 李亚如, 任永鹏, 王长记, 潘昆明, 王利萌, 吕贝贝, 夏梁彬, 陈雪敏. ZIF衍生材料在ORR、OER和HER领域的应用研究进展[J]. 材料导报, 2023, 37(S1): 23010012-12.
[10] 于舒睿, 杨继凯, 杨雪, 王国政, 尹笑乾. WO3/CuWO4复合薄膜的制备及光电化学性能[J]. 材料导报, 2023, 37(4): 21070015-6.
[11] 江永, 杜亚平. 稀土氧化物复合材料在电催化中的研究进展[J]. 材料导报, 2023, 37(3): 22110067-9.
[12] 唐春, 吴梦南, 段超, 余堂杰, 于姗, 周莹. 基于光电催化的硫化氢高值利用研究进展[J]. 材料导报, 2023, 37(3): 22020097-7.
[13] 徐文杰, 刘丹, 屈德宇, 李曦. 两电子氧还原电催化合成过氧化氢的研究进展[J]. 材料导报, 2023, 37(24): 22030010-12.
[14] 郑德勇, 晋慧慧, 姬鹏霞. Co3S4电极材料的制备及在碱性析氢反应中的重构行为研究[J]. 材料导报, 2023, 37(18): 22040230-4.
[15] 周靓, 何文远, 陈隆源, 朱红伟, 陈丽娟, 凌辉, 郑学军. Sn、P共掺杂MoS2纳米花的制备及电催化析氢性能研究[J]. 材料导报, 2023, 37(15): 22020118-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed