Preparation of NiFe2O4/rGO Electrode Material and Its Electrocatalytic Performance for HMF Oxidation
WANG Honglei1,*, NIU Caiyun2, ZHU Hongyue1, LI Xiaoming1, ZHOU Dan1, SUN Zhigang3, HU Jifan3, YANG Changping3,*
1 School of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China 2 School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China 3 School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
Abstract: The 2,5-furandicarboxylic acid (FDCA) synthesized by electro synthesis of 5-hydroxymethylfurfural (HMF) has a structure and properties similar to terephthalic acid, providing the possibility for developing biodegradable plastics and reducing white pollution. The NiFe2O4/rGO electrode material was successfully synthesized using CO2 laser, and its microstructure presents a nano particle embedded graphene oxide structure. In situ Raman spectroscopy showed that compared with the Fe5O12/rGO electrode material, the NiFe2O4/rGO surface was reconstructed into NiOOH and FeOOH species during the HMF electrocatalytic oxidation process, confirming that the addition of Ni makes the material more prone to surface reconstruction. The surface reconstructed NiFe2O4/rGO electrode material showed a decrease in overpotential to 26 mV at 100 mA· cm-2, and a decrease of approximately 182 mV compared to the oxygen production reaction (OER) overpotential. The electrode material after surface reconstruction has a larger specific surface area, which promotes the contact between reactants and electrode material. The conversion rate of reactants, selectivity of target products, and Faraday efficiency were 99.8%, 99.3%, and 87.6%, respectively. This study provides an effective approach for promoting surface reconstruction of catalytic materials through the addition of elements, thereby enhancing the electrocatalytic oxidation activity of HMF.
通讯作者:
* 王洪雷,太原科技大学化学工程与技术学院讲师。2022年8月获得大连理工大学博士学位,主要从事微纳材料的合成与表征及其在力、电、磁等作用下的表面行为,并应用与电合成高附加值产品方面。先后在Advanced Energy Materials、Nano Energy、Applied Catalysis B-Environmental、Che-mical Engineering Journal、Journal of Materials Chemistry A、ChemSusChem等期刊发表SCI论文10余篇,授权国家发明专利1项。wanghonglei89@tyust.edu.cn 杨昌平,太原科技大学材料科学与工程学院特聘教授,教育部新世纪优秀人才。1998年7月毕业于中国科学院物理研究所,获理学博士学位。目前主要从事凝聚态物理、磁电功能材料和电化学能源材料与器件的科学研究和技术开发工作,撰写科技专著5部,获批国际发明专利3项,国内发明专利10余项,发表科技论文200余篇,获湖北省自然科学奖励1项。2019074@tyust.edu.cn
引用本文:
王洪雷, 牛彩云, 朱宏跃, 李晓明, 周丹, 孙志刚, 胡季帆, 杨昌平. NiFe2O4/rGO电极材料的制备及电催化HMF氧化性能研究[J]. 材料导报, 2024, 38(14): 23110252-6.
WANG Honglei, NIU Caiyun, ZHU Hongyue, LI Xiaoming, ZHOU Dan, SUN Zhigang, HU Jifan, YANG Changping. Preparation of NiFe2O4/rGO Electrode Material and Its Electrocatalytic Performance for HMF Oxidation. Materials Reports, 2024, 38(14): 23110252-6.
1 Xu C, Paone E, Rodríguez-Padrón D, et al. Chemical Society Reviews, 2020, 49(13), 4273. 2 You B, Sun Y. Accounts of Chemical Research, 2018, 51(7), 1571. 3 van Putten R J, van der Waal J C, de Jong E, et al. Chemical Reviews, 2013, 113(3), 1499. 4 Hou Y C, He Z S, Ren S X, et al. Acta Physico-Chimica Sinica, 2023, 39(9), 2212065 (in Chinese). 侯玉翠,何卓森,任树行,等. 物理化学学报,2023, 39(9), 2212065. 5 Motagamwala A H, Won W, Sener C, et al. Science Advances, 2018, 4(1), eaap9722. 6 Zhao H B, Holladay J E, Brown H, et al. Science, 2007, 316(5831), 1597. 7 Li M R, Song Y J, Wan X, et al. Acta Physico-Chimica Sinica, 2024, 40(9), 2306007 (in Chinese). 李美然,宋英杰,万鑫,等. 物理化学学报,2024, 40(9), 2306007. 8 Xu C, Paone E, Rodriguez-Padron D, et al. Chemical Society Reviews, 2020, 49(13), 4273. 9 Wang H L, Zhou Y M, Tao S Y. Applied Catalysis B: Environment and Energy, 2022, 315, 121588. 10 Zhao G C, Hai G T, Zhou P Y, et al. Advanced Functional Materials, 2023, 33(14), 2213170. 11 Wang H L, Niu C Y, Liu W, et al. Applied Catalysis B: Environment and Energy, 2024, 340, 123249. 12 Hayashi E, Yamaguchi Y, Kamata K, et al. Journal of American Chemical Society, 2019, 141(2), 890. 13 Kim M, Su Y Q, Fukuoka A, et al. Angewandte Chemie International Edition, 2018, 57(27), 8235. 14 Villa A, Schiavoni M, Campisi S, et al. ChemSusChem, 2013, 6(4), 609. 15 You B, Liu X, Jiang N, et al. Journal of the American Chemical Society, 2016, 138(41), 13639. 16 Wang H L, Li C, An J T, et al. Journal of Materials Chemistry A, 2021, 9(34), 18421. 17 Zhang N, Zou Y, Tao L, et al. Angewandte Chemie International Edition, 2019, 58(44), 15895. 18 Wang H L, Zhang J W, Tao S Y, et al. Chemical Engineering Journal, 2022, 444, 136693. 19 Gao L K, Cui X, Wang Z W, et al. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(7), e2023421118. 20 Luo P, Wang H, Wen X, et al. Advanced Energy Materials, 2024,14(9), 2302532. 21 Liu H, Xie R, Wang Q, et al. Advanced Science, 2023, 10(13) 2207128. 22 Zheng D Y, Jin H H, Ji P X. Materials Reports, 2023, 37(18), 22040230 (in Chinese). 郑德勇,晋慧慧,姬鹏霞,等. 材料导报,2023, 37(18), 22040230. 23 Liang C, Zou P, Nairan A, et al. Energy & Environmental Science, 2020, 13(1), 86. 24 He J, Zhou X, Xu P, et al. Nano Energy, 2021, 80, 105540. 25 Li Y B, Liu Y P, Wang J, et al. ACS Catalysis, 2018, 8(1), 1. 26 Qi J, Chen M X, Zhang W, et al. Chinese Journal of Catalysis, 2022, 43(07), 1955. 27 Jiang J, Sun F F, Zhou S, et al. Nature Communication, 2018, 9, 2885. 28 Wei B B, Shang C Q, Wang X, et al. Small, 2020, 16, 2002789. 29 Li X, Wu H, Elshahawy A M, et al. Advanced Functional Materials, 2018, 28(20), 1800036.