Please wait a minute...
材料导报  2024, Vol. 38 Issue (10): 23010042-7    https://doi.org/10.11896/cldb.23010042
  无机非金属及其复合材料 |
泡沫镍负载CuO纳米花的构筑及电化学硝酸根还原制氨的性能
黄顺元, 刘律飞, 顾韵洁, 葛帅辰, 李静莎*
苏州科技大学材料科学与器件研究院,江苏 苏州 215009
Construction of Nickel Foam Supported CuO Nanoflower Composite and Its Property of Electrochemical Nitrate Reduction to Ammonia
HUANG Shunyuan, LIU Lyufei, GU Yunjie, GE Shuaichen, LI Jingsha*
Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
下载:  全 文 ( PDF ) ( 22077KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电化学硝酸根还原制氨(Nitrate reduction to ammonia,NRA)是以硝酸根和水分别作为氮和氢的来源,采用电化学的途径实现室温下氨的绿色合成兼去除水中硝酸盐污染物,对缓解能源危机和环境问题具有重要的研究意义。然而,硝酸根到氨是一个复杂的8e-转移过程且伴随着激烈的析氢副反应,这严重制约了合成氨的选择性和法拉第效率。为此,采用水热合成法及后续的热处理设计制备了泡沫镍负载氧化铜纳米花催化剂并探究其电化学硝酸根还原制氨性能。通过调控硝酸铜与尿素比例、热解温度等合成条件,达到泡沫镍(Ni foam,NF)均匀负载CuO纳米花的目的。结果表明,当Cu(NO3)2、CO(NH2)2的物质的量比为1∶6时,所得到的目标催化剂(CuO-6@NF)在法拉第效率、NH3产率、选择性和硝酸盐转换率方面表现出最佳性能。在-0.23 V vs.RHE情况下,CuO-6@NF NH3的产率达到1.15 mmol·h-1·cm-2,选择性为89.36%,总氮的去除率高达96.71%。此外,该催化剂还表现出良好的再现性、高稳定性以及较宽泛浓度下的适用性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄顺元
刘律飞
顾韵洁
葛帅辰
李静莎
关键词:  硝酸根还原  合成氨  电催化剂  CuO纳米花  异质结    
Abstract: Electrochemical nitrate reduction to ammonia (NRA) could realize the green synthesis of ammonia and remove nitrate pollutant through electrochemical pathways by using nitrate and water as sources of nitrogen and hydrogen, respectively, which is of significance for alleviating energy crisis and environmental problems. However, nitrate to ammonia is a complex eight-electron transfer process accompanied by intense hydrogen evolution side reactions, which seriously limits the selectivity and Faraday efficiency of ammonia synthesis. Therefore, nickel foam-supported copper oxide nanoflower catalyst was prepared by hydrothermal synthesis and subsequent heat treatment process, and its electrocatalytic performance for nitrate reduction to ammonia was explored. By adjusting the synthesis conditions such as the ratio of copper nitrate to urea and pyrolysis temperatures, the uniform CuO nanoflowers loaded on nickel foam (NF) was achieved. The results show that when n(Cu(NO3)2)∶n(CO(NH2)2) is 1∶6, the obtained target catalyst (CuO-6@NF) shows the best performance in terms of Faraday efficiency, NH3 yield, selectivity and nitrate conversion. At -0.23 V vs. RHE, the yield of CuO-6@NF ammonia reached 1.15 mmol·h-1·cm-2, the selectivity was 89.36%, and the removal rate of total nitrogen was as high as 96.71%. In addition, the catalyst exhibits good reproducibility, high stability, and applicability over a wide range of concentrations.
Key words:  nitrate reduction    ammonia production    electrocatalysts    CuO nanoflower    heterostructure
出版日期:  2024-05-25      发布日期:  2024-05-28
ZTFLH:  TQ151  
基金资助: 江苏省自然科学基金青年项目(BK20200991)
通讯作者:  *李静莎,苏州科技大学材料科学与工程学院硕士研究生导师。2014年中南大学应用化学专业本科毕业,2019年中南大学化学工程与技术专业博士毕业后到苏州科技大学工作至今。目前主要从事纳米材料的设计制备及在电催化、金属空气电池、锌-硝酸根电池等方面的研究。发表论文40余篇,包括ChemSusChem、Green Energy Environ.、Appl.Catal.B:Environ.、J.Power Sources、Energy Storage Mater.等。lijingsha@usts.edu.cn   
作者简介:  黄顺元,2020年6月于中国矿业大学获得学士学位。现为苏州科技大学化学与生命科学学院硕士研究生,在李静莎老师的指导下进行研究。目前主要研究领域为电催化还原硝酸盐。
引用本文:    
黄顺元, 刘律飞, 顾韵洁, 葛帅辰, 李静莎. 泡沫镍负载CuO纳米花的构筑及电化学硝酸根还原制氨的性能[J]. 材料导报, 2024, 38(10): 23010042-7.
HUANG Shunyuan, LIU Lyufei, GU Yunjie, GE Shuaichen, LI Jingsha. Construction of Nickel Foam Supported CuO Nanoflower Composite and Its Property of Electrochemical Nitrate Reduction to Ammonia. Materials Reports, 2024, 38(10): 23010042-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23010042  或          http://www.mater-rep.com/CN/Y2024/V38/I10/23010042
1 Chen A S C, Wang L, Sorg T J, et al. Water Research, 2020, 172, 115455.
2 You G, Wang C, Hou J, et al. Chemical Engineering Journal, 2021, 419, 129646.
3 Su J F, Ruzybayev I, Shah I, et al. Applied Catalysis B-Environmental, 2016, 180, 199.
4 Exner M E, Spalding R F. Applied Geochemistry, 1994, 9(1), 73.
5 Su J F, Ruzybayev I, Shah I, et al. Applied Catalysis B:Environmental, 2016, 180, 199.
6 Song Q, Li M, Wang L, et al. Journal of Hazardous Materials, 2019, 363, 119.
7 Sanchez B S, Neyertz C A, Zanuttini M S, et al. Catalysis Today, 2022, 394, 467.
8 Liu H, Park J, Chen Y, et al. ACS Catalysis, 2021, 11(14), 8431.
9 Gao J, Shi N, Guo X, et al. Environmental Science & Technology, 2021, 55(15), 10684.
10 Labarca F, Borquez R. Science of the Total Environment, 2020, 723, 137809.
11 Garcia-Segura S, Lanzarini-Lopes M, Hristovski K, et al. Applied Catalysis B-Environmental, 2018, 236, 546.
12 Couto A B, Oishi S S, Ferreira N G. Journal of Industrial and Enginee-ring Chemistry, 2016, 39, 210.
13 Zhang Y, Chen X, Wang W, et al. Applied Catalysis B-Environmental, 2022, 310, 121346.
14 Li J, Zhan G, Yang J, et al. Journal of the American Chemical Society, 2020, 142(15), 7036.
15 Ren T, Yu Z, Yu H, et al. Applied Catalysis B-Environmental, 2022, 318, 121805.
16 Sarker A C, Kato M, Yagi I . Electrochimica Acta, 2022, 425, 140628.
17 Lu X, Yu J, Cai J, et al. Cell Reports Physical Science, 2022, 3(7), 100961.
18 Hu T, Wang C, Wang M, et al. ACS Catalysis, 2021, 11(23), 14417.
19 Lyu X S, Wang X L, Jiang G M, et al. Materials Reports, 2023, 37(4), 62(in Chinese).
吕晓书, 王霞玲, 蒋光明, 等. 材料导报, 2023, 37(4), 62.
20 Meng L Q, Cui S P, Gan Y L, et al. Materials Reports, 2024, 38(2), 1(in Chinese).
孟令钦, 崔素萍, 甘延玲, 等. 材料导报, 2024, 38(2), 1.
21 Gong Z, Zhong W, He Z, et al. Applied Catalysis B:Environmental, 2022, 305, 121021.
22 Lin W, Chen H, Lin G, et al. Angewandte Chemie International Edition, 2022, 61(36), e202207807.
23 Zhang Hongxia, Li Na, Yan Wenjun, et al. Journal of Catalysis, 2017, 352, 352.
24 Wu H X, Cao W M, Li Y, et al. Electrochimica Acta, 2010, 55(11), 3734.
25 Xun X, Liu H, Su Y, et al. Journal of Solid State Chemistry, 2019, 275, 95.
26 Lopes O F, Varela H. Chemistryselect, 2018, 3(31), 9046.
27 Beltrame T F, Gomes M C, Marder L, et al. Journal of Water Process Engineering, 2020, 35, 101189.
28 Yang L, Li J, Du F, et al. Electrochimica Acta, 2022, 411, 133495.
29 Feng T, Wang J, Wang Y, et al. Chemical Engineering Journal, 2022, 433, 133495.
30 Zhao X, Yang Q, Cui J. Journal of Rare Earths, 2008, 26(4), 511.
31 Du F, Cui G H, Yang B L, et al. Journal of Power Sources, 2022, 543, 231832.
[1] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[2] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
[3] 贾飞宏, 卫学玲, 包维维, 邹祥宇. MoS2/Ni3S2/NF双功能电催化剂用于高效全水解[J]. 材料导报, 2024, 38(4): 22040365-7.
[4] 贺亦菲, 杨德仁, 皮孝东. 基于硅/二维层状材料异质结的红外光电探测器研究进展[J]. 材料导报, 2024, 38(1): 22030194-9.
[5] 庄明兴, 卡盖·索音图, 付文英, 司司, 余添玉, 杨俊东, 章剑, 梁宇欣, 赵新生, 魏永生. 硼/磷掺杂电解水析氢金属催化剂的研究现状与进展[J]. 材料导报, 2023, 37(S1): 22080121-11.
[6] 钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
[7] 夏鹏, 傅萍, 黄金华, 李佳, 宋伟杰. 硅异质结太阳能电池用透明导电氧化物薄膜的研究现状及发展趋势[J]. 材料导报, 2023, 37(9): 22090082-9.
[8] 曹一达, 刘成宝, 陈丰, 钱君超, 许小静, 孟宪荣, 陈志刚. CeO2/BiOI/g-C3N4三相复合材料的制备及可见光催化降解RhB性能研究[J]. 材料导报, 2023, 37(3): 21070275-7.
[9] 王宗乾, 申佳锟, 李禹, 李长龙, 王鹏. g-C3N4/MXene/Ag3PO4异质结催化剂构建及催化性能[J]. 材料导报, 2023, 37(22): 22030277-7.
[10] 邓康宁, 肖清泉, 陈豪, 王傲霜, 王江翔. 日盲紫外硅/金刚石异质结光电二极管的结构设计和仿真[J]. 材料导报, 2023, 37(20): 22030226-6.
[11] 陈丹丹, 李燕, 王爱国. 尖晶石型铁氧体异质结的构建及用于有机污染物光催化降解的研究进展[J]. 材料导报, 2023, 37(16): 21110278-10.
[12] 秦超, 张鑫, 周奕伦, 孟则达, 刘守清. 单原子铁在硫化钼上的组装及电催化析氢[J]. 材料导报, 2023, 37(11): 21100048-5.
[13] 陈晶亮, 栾丽君, 张茹, 张研, 杨云, 刘剑, 田野, 魏星, 樊继斌, 段理. Ⅱ型C2N/ZnO异质结水分解光催化剂的第一性原理研究[J]. 材料导报, 2023, 37(11): 21110258-8.
[14] 刘佳琪, 杨庆浩. 氧还原电催化剂的研究进展[J]. 材料导报, 2022, 36(24): 20110226-6.
[15] 刘毅, 冯紫娟, 贾雯, 吴雪, 郑旭煦, 袁小亚. 一步溶剂热法合成Bi2S3/BiOBr多级异质结及其增强可见光光催化去除RhB的研究(英文)[J]. 材料导报, 2022, 36(24): 21030140-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed