Please wait a minute...
材料导报  2024, Vol. 38 Issue (10): 23010052-6    https://doi.org/10.11896/cldb.23010052
  无机非金属及其复合材料 |
壳聚糖衍生碳包覆纳米硅复合材料锂离子电池性能研究
吴强1, 李正伟1, 周建华1,*, 张冬梅2, 党锋2, 刘文平3, 苗蕾1,*
1 桂林电子科技大学材料科学与工程学院,广西电子信息材料构效关系重点实验室,广西 桂林 541004
2 山东大学材料科学与工程学院,济南 250061
3 中国有色桂林矿产地质研究院有限公司,国家特种矿物材料工程技术研究中心,广西超硬材料重点实验室,广西 桂林 541004
Performance of Chitosan-Derived Carbon-coated Nanosilicon Anode Materials for Lithium-ion Batteries
WU Qiang1, LI Zhengwei1, ZHOU Jianhua1,*, ZHANG Dongmei2, DANG Feng2, LIU Wenping3, MIAO Lei1,*
1 Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
2 School of Materials Science and Engineering, Shandong University, Jinan 250061, China
3 National Special Mineral Materials Engineering Technology Research Center & Guangxi Key Laboratory of Superhard Materials, China Nonferrous Metal (Guilin) Geology and Mining Co., Ltd., Guilin 541004, Guangxi, China
下载:  全 文 ( PDF ) ( 17992KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 硅负极材料因具有较高的理论容量(Li22Si5合金相对应4 200 mAh/g)、较低的工作电压(0.2~0.3 V vs Li/Li+)和地球上丰富的原材料储备,成为代替石墨负极的理想材料之一。但是,低电导率及在循环过程中发生剧烈体积膨胀导致电极失效问题限制了硅负极材料的进一步发展。因此,本工作通过物理法利用壳聚糖和石墨对纳米硅实现碳包覆和复合,制备壳聚糖/石墨@纳米硅复合材料(C/G@Si复合材料),对C/G@Si复合材料的结构、形貌和电化学性能进行研究。结果表明:随着石墨添加量的提高,C/G@Si复合材料的可逆比容量略微下降,循环性能和导电性能显著提高。当添加50%(质量分数)石墨时,在100 mA/g的电流密度下,C/G@Si复合材料的首次放电比容量为1 136.1 mAh/g,循环充放电100次后剩余容量保持在658.5 mAh/g,展示出优异的电化学性能,对进一步推广硅碳负极材料具有一定的参考价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴强
李正伟
周建华
张冬梅
党锋
刘文平
苗蕾
关键词:  锂离子电池  硅碳负极材料  壳聚糖  石墨掺杂    
Abstract: Silicon anode material has become an ideal material to replace graphite anode due to its high theoretical capacity (4 200 mAh/g), low opera-ting voltage (0.2—0.3 V vs Li/Li+) and abundant raw materials on the earth for energy storage. However, the volume expansion of silicon anode materials would lead to electrode degradation during the cycle. Therefore, in this paper, chitosan/graphite@silicon (C/G@Si) composite was prepared by using chitosan and graphite to achieve carbon coating and compositing on nano silicon through physical methods. For C/G@Si, the structure, morphology and electrochemical properties of the composites were studied. The results showed that with the increase of graphite addition, the reversible specific capacity decreased slightly, while the cycle performance and conductivity improved significantly. When 50wt% graphite was added, the specific capacity of the first discharge was 1 136.1 mAh/g under the current density of 100 mA/g, and the residual capacity remained at 658.5 mAh/g after 100 cycles of charging/discharging, which exhibits excellent electrochemical performance and has certain reference value for further promotion of silicon-carbon anode materials.
Key words:  lithium ion battery    silicon-carbon anode material    chitosan    graphite doping
出版日期:  2024-05-25      发布日期:  2024-05-28
ZTFLH:  TB332  
基金资助: 中央引导地方科技发展资金项目 (ZY21195037);广西杰出青年基金(2019GXNSFFA245010); 国家自然科学基金 (52173094); 桂林市科学研究与技术开发计划 (20220110-1)
通讯作者:  *周建华,桂林电子科技大学材料科学与工程学院教授、硕士研究生导师,广西杰出青年基金获得者,广西高校“千骨计划”入选者。2010年南京航空航天大学材料加工工程专业博士毕业后到中国科学院广州能源研究所工作,2015年到桂林电子科技大学工作至今。目前主要从事锂离子电池、新能源功能材料、智能高分子材料等方面的研究工作。发表论文70余篇,SCI他引2 000余次,入选全球前1%ESI高被引论文1篇。申请发明专利20项,已获授权15项。jianhuazhou@guet.edu.cn
苗蕾,桂林电子科技大学材料科学与工程学院教授、博士研究生导师,广西八桂学者,中国科学院“百人计划”入选者。兼日本精细陶瓷研究中心材料技术研究所客座研究员、中国硅酸盐学会特陶分会和热电分会理事。2004年于日本名古屋工业大学获博士学位。主要从事热电转换、锂离子电池、太阳能光热转换和气凝胶材料的创新合成及其在可再生能源和节能领域的应用研究。miaolei@guet.edu.cn   
作者简介:  吴强,2020年6月于中国矿业大学徐海学院取得工学学士学位。现为桂林电子科技大学材料科学与工程学院硕士研究生,目前主要研究领域为新能源材料、锂离子电池。
引用本文:    
吴强, 李正伟, 周建华, 张冬梅, 党锋, 刘文平, 苗蕾. 壳聚糖衍生碳包覆纳米硅复合材料锂离子电池性能研究[J]. 材料导报, 2024, 38(10): 23010052-6.
WU Qiang, LI Zhengwei, ZHOU Jianhua, ZHANG Dongmei, DANG Feng, LIU Wenping, MIAO Lei. Performance of Chitosan-Derived Carbon-coated Nanosilicon Anode Materials for Lithium-ion Batteries. Materials Reports, 2024, 38(10): 23010052-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23010052  或          http://www.mater-rep.com/CN/Y2024/V38/I10/23010052
1 Shi Q, Zhou J, Ullah S, et al. Energy Storage Materials, 2021, 34, 735.
2 Wang B, Li W, Wu T, et al. Energy Storage Materials, 2018, 15, 139.
3 Dou F, Shi L, Chen G, et al. Electrochemical Energy Reviews, 2019, 2(1), 149.
4 Yu Z Z, Tian B, Li Y, et al. ACS Applied Materials & Interfaces, 2018, 11(1), 534.
5 Lu J, Chen Z, Pan F, et al. Electrochemical Energy Reviews, 2018, 1(1), 35.
6 Zhu G, Chao D, Xu W, et al. ACS Nano, 2021, 15(10), 15567.
7 Li P, Kim H, Myung S T, et al. Energy Storage Materials, 2021, 35, 550.
8 Dai H, Dong J, Wu M, et al. Angewandte Chemie International Edition, 2021, 60(36), 19852.
9 Yan Y, Lin J, Liu T, et al. Corrosion Science, 2022, 200, 110231.
10 Zhang S, Sun L, Fan Q, et al. Nano Research Energy, 2022, 1(1), e9120001.
11 Patnaik S G, Vedarajan R, Matsumi N. Journal of Materials Chemistry A, 2017, 5(34), 17909.
12 Zhao W, Wang X, Ma X, et al. Journal of Materials Chemistry A, 2021, 9(48), 27615.
13 Han X, Zhou W, Chen M, et al. Journal of Energy Chemistry, 2022, 67, 727.
14 Chu X, Wang Y, Cai L, et al. SusMat, 2022, 2(3), 379.
15 Liu N, Lu Z, Zhao J, et al. Nature Nanotechnology, 2014, 9(3), 187.
16 Zhang L, Wang C, Dou Y, et al. Angewandte Chemie International Edition, 2019, 58(26), 8824.
17 Bao K Q, Zhang Z K, Piao X Q, et al. Journal of East China Normal University(Natural Sciences), 2022, 2022(1), 22(in Chinese).
鲍恺婧, 张召凯, 朴贤卿, 等. 华东师范大学学报(自然科学版), 2022, 2022(1), 22.
18 Bai X J, Liu C, Hou M, et al. Journal of Inorganic Materials, 2017, 32(7), 705(in Chinese).
白雪君, 刘婵, 侯敏, 等. 无机材料学报, 2017, 32(7), 705.
19 Xu Q, Li J Y, Sun J K, et al. Advanced Energy Materials, 2017, 7(3), 1601481.
20 Liu N, Liu J, Jia D, et al. Energy Storage Materials, 2019, 18, 165.
21 Zhang Y C, You Y, Xin S, et al. Nano Energy, 2016, 25, 120.
22 Liu W P, Xu H R, Qin H Q, et al. Silicon, 2020, 12(9), 2259.
23 Chen H, Wang Z, Hou X, et al. Electrochimica Acta, 2017, 249, 113.
24 Wang G, Xu B, Shi J, et al. Applied Surface Science, 2018, 436, 505.
25 Hu X, Huang S, Hou X, et al. Silicon, 2018, 10(4), 1443.
26 Zhou Y, Tian Z, Fan R, et al. Powder Technology, 2015, 284, 365.
27 Zhou Y, Guo H, Wang Z, et al. Journal of Alloys and Compounds, 2017, 725, 1304.
28 Miroshnikov Y, Zitoun D. Journal of Nanoparticle Research, 2017, 19(11), 1.
29 Chen H, Hou X, Chen F, et al. Carbon, 2018, 130, 433.
30 Wang M, Xiao X. Journal of Power Sources, 2016, 326, 365.
31 He D, Huang X, Li M. Carbon, 2019, 141, 531.
32 Kalaga K, Rodrigues M T F, Trask S E, et al. Electrochimica Acta, 2018, 280, 221.
33 Kalaga K, Shkrob I A, Haasch R T, et al. Journal of Physical Chemistry C, 2017, 121(42), 23333.
34 Liu N, Liu J, Jia D, et al. Energy Storage Materials, 2019, 18, 165.
35 Zhou Y, Guo H, Yong Y, et al. Materials Letters, 2017, 195, 164.
36 Luo W, Wang Y, Wang L, et al. ACS Nano, 2016, 10(11), 10524.
37 Chen H, Shen K, Hou X, et al. Applied Surface Science, 2019, 470, 496.
38 He W, Tian H, Xin F, et al. Journal of Materials Chemistry A, 2015, 3(35), 17956.
39 Chen S, Shen L, van Aken P A, et al. Advanced Materials, 2017, 29(21), 1605650.
40 Zhang D M, Yang R N, Zhou J H, et al. Energy Storage Materials, 2023, 63, 102976.
[1] 刘显茜, 曹军磊, 李文辉, 曾朴. 蜘蛛网流道冷板冷却液对向流锂离子电池散热分析[J]. 材料导报, 2024, 38(4): 22070040-6.
[2] 尹啸笛, 张涛, 张新春, 刘南南, 黄子轩, 邹有云. 机械滥用下锂离子电池的力学响应及安全性预测研究进展[J]. 材料导报, 2024, 38(2): 22070154-9.
[3] 付举, 谢雯娜, 智茂永. 高镍三元正极材料容量衰退机理及改性研究进展[J]. 材料导报, 2023, 37(S1): 23040181-12.
[4] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[5] 闫星雨, 但年华, 陈一宁, 但卫华, 李正军. 胶原基复合止血材料的研究进展及展望[J]. 材料导报, 2023, 37(5): 21030008-9.
[6] 王娜, 费杰, 郑欣慧, 赵蓓, 杨甜. 碳布基自支撑锂/钠离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(4): 20090256-9.
[7] 刘珊, 廖磊, 魏莉, 李炫妮, 曹磊, 王鑫. 壳聚糖交联腐殖酸凝胶球吸附渗滤液中重金属离子研究[J]. 材料导报, 2023, 37(3): 21040317-8.
[8] 陈守东, 查辰宇, 卢日环. 金属极薄带在锂离子电池中的应用与研究进展[J]. 材料导报, 2023, 37(23): 22070289-6.
[9] 杨文飞, 张勇, 樊伟杰, 王安东, 董星龙. 直流电弧等离子体下共蒸发无定型TiO2基纳米复合材料及储锂性能[J]. 材料导报, 2023, 37(19): 22030288-8.
[10] 穆洪亮, 冯柳, 吴立清, 毛晓璇, 刘志超. SiO用作锂离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(18): 21080240-13.
[11] 周鑫, 关水, 孙长凯. 基于壳聚糖/黄原胶互穿网络的导电水凝胶支架制备及性能研究[J]. 材料导报, 2023, 37(18): 22030238-8.
[12] 于贺川, 熊兴宇, 胡仁宗. 低温金属离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(17): 21120080-15.
[13] 任荣浩, 孙平, 王永光, 丁钊, 赵栋, 俞泽新. 壳聚糖在铝低压力化学机械抛光中的钝化作用及抛光行为研究[J]. 材料导报, 2023, 37(16): 22030222-6.
[14] 李燕, 张俊杰, 郭俊明. Ni-La双掺LiMn2O4截角八面体正极材料的制备及电化学性能[J]. 材料导报, 2023, 37(14): 21120089-8.
[15] 陈喜, 杨春利, 黄江龙, 张浩, 王靖. 高电压钴酸锂正极材料研究进展[J]. 材料导报, 2023, 37(13): 21070223-14.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed