Please wait a minute...
材料导报  2023, Vol. 37 Issue (14): 21120089-8    https://doi.org/10.11896/cldb.21120089
  无机非金属及其复合材料 |
Ni-La双掺LiMn2O4截角八面体正极材料的制备及电化学性能
李燕1, 张俊杰2, 郭俊明1,*
1 云南民族大学化学与环境学院,昆明 650500
2 西安交通大学物理学院,西安 710049
Preparation and Electrochemical Performance of Ni-La Double-doped LiMn2O4 Truncated Octahedral Cathode Material
LI Yan1, ZHANG Junjie2, GUO Junming1,*
1 School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, China
2 School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
下载:  全 文 ( PDF ) ( 16363KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用溶液燃烧法合成了一种具有{111}和{100}晶面的截角八面体LiNi0.05La0.04Mn1.91O4正极材料。结果表明,Ni-La复合掺杂促进了尖晶石型LiMn2O4晶体的{111}及{100}晶面择优生长,形成了亚微米级截角八面体晶粒形貌的正极材料。在1C下,其首次放电比容量为128.5 mA·h/g,1 000次循环后保持率为65.48%; 10C倍率下,放电比容量为108.2 mA·h/g,1 500次循环后容量保持率为75.8%;在更高倍率15C和20C下,经2 000次长循环后保持率分别为74.76%和76.16%,说明LiNi0.05La0.04Mn1.91O4材料充放电倍率越高,容量保持率越优。该材料具有较大的锂离子扩散系数与较小的表观活化能。Ni-La共掺杂与截角八面体形貌联合调控策略可有效抑制Jahn-Teller畸变,减少Mn溶解及增加Li+迁移通道数量,稳定晶体结构,提升尖晶石型LiMn2O4正极材料的倍率性能和循环寿命。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李燕
张俊杰
郭俊明
关键词:  LiMn2O4  Ni-La复合掺杂  截角八面体  Jahn-Teller畸变  Mn溶解  正极材料  锂离子电池    
Abstract: The truncated octahedral LiNi0.05La0.04Mn1.91O4 cathode material with {111} and {100} crystal planes was prepared by a solution combustion method. The results show that the Ni-La co-doping promoted the preferential growth of {111} and {100} planes of spinel LiMn2O4 crystals, forming a cathode material with sub-micron truncated octahedral grain morphology. At 1C, the first discharge specific capacity was 128.5 mA·h/g, and the retention rate after 1 000 cycles was 65.48%; at 10C rate, the discharge specific capacity was 108.2 mA·h/g, and the capacity retention rate after 1 500 cycles was 75.8%; at higher rates of 15C and 20C, the retention rates after 2 000 long cycles were 74.76% and 76.16%, respectively, indicating that the higher the charge-discharge rate of LiNi0.05La0.04Mn1.91O4 material, the better the capacity retention rate. The material has a larger lithium-ion diffusion coefficient and a smaller apparent activation energy. The combined control strategy of Ni-La co-doping and truncated octahedral morphology can effectively suppress Jahn-Teller distortion, reduce Mn dissolution, and increase the number of Li+ migration channels, stabilize the crystal structure, and increase the rate performance and cycle life of spinel LiMn2O4 cathode material.
Key words:  LiMn2O4    Ni-La co-doping    truncated octahedron    Jahn-Teller distortion    Mn dissolution    cathode material    lithium-ion battery
出版日期:  2023-07-25      发布日期:  2023-07-24
ZTFLH:  TM912  
基金资助: 国家自然科学基金(51972282)
通讯作者:  *郭俊明,云南民族大学化学与环境学院教授、硕士研究生导师,云南省中青年学术技术带头人,云南省高等学校教学名师。1996年四川大学化学系无机化学专业毕业,获理学硕士学位。主要从事锂离子电池正极材料的研究工作。发表学术论文100余篇,授权国家发明专利15项,出版专著1部、教材1部。获云南省科学技术自然科学奖二、三等奖各1项。guojunming@tsinghua.org.cn   
作者简介:  李燕,2021年7月毕业于云南民族大学化学与环境学院,获理学硕士学位,师承郭俊明教授。现就职于滇西应用技术大学普洱茶学院。
引用本文:    
李燕, 张俊杰, 郭俊明. Ni-La双掺LiMn2O4截角八面体正极材料的制备及电化学性能[J]. 材料导报, 2023, 37(14): 21120089-8.
LI Yan, ZHANG Junjie, GUO Junming. Preparation and Electrochemical Performance of Ni-La Double-doped LiMn2O4 Truncated Octahedral Cathode Material. Materials Reports, 2023, 37(14): 21120089-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120089  或          http://www.mater-rep.com/CN/Y2023/V37/I14/21120089
1 Li F K, Liu Z B, Shen J D, et al. Journal of Materials Chemistry A, 2021, 9(5), 2830.
2 Zhai X H, Zhang P P, Zhou J F, et al. Materials Reports, 2021, 35(7), 7056 (in Chinese).
翟鑫华, 张盼盼, 周建峰, 等. 材料导报, 2021, 35(7), 7056.
3 Wang Y X, Liu B, Li Q Y, et al. Journal of Power Sources, 2015, 286, 330.
4 Zhao H Y, Li F, Liu X Q, et al. Electrochimica Acta, 2015, 166, 124.
5 Zhang S, Deng W T, Momen R, et al. Journal of Materials Chemistry A, 2021, 9, 21532.
6 Ohzuku T, Kato J J, Sawai K, et al. Journal of the Electrochemical Society, 1991, 138(9), 2556.
7 Zuo C J, Hu Z X, Qi R, et al. Advanced Energy Materials, 2020, 10(34), 2000363.
8 Zhan C, Wu T P, Lu J, et al. Energy Environmental Science, 2018, 11(2), 243.
9 Deng B H, Nakamura H, Yoshio M. Journal of Power Sources, 2008, 180 (2), 864.
10 Huang J J, Yang F L, Guo Y J, et al. Ceramics International, 2015, 41(8), 9662.
11 Zhu J Y, Liu Q, Xiang M W, et al. Ceramics International, 2020, 46, 14516.
12 Wang S M, Liu H L, Xiang M W, et al. New Journal Chemistry, 2020, 44, 10569.
13 Wang Z, Du J, Li Z, et al. Ceramics International, 2014, 40, 3527.
14 Michalska M, Ałkowska D, Jasinski J B, et al. Electrochimica Acta, 2018, 276, 37.
15 Sun H B, Chen Y G, Xu C H, et al. Journal of Solid State Electroche-mistry, 2012, 16, 1247.
16 Duan Y Z, Guo J M, Xiang M W, et al. Solid State Ionics, 2018,326, 100.
17 Li Y, Lu Y, Guo J M, et al. Battery Bimonthly, 2020, 50(1), 78 (in Chinese).
李燕, 卢瑶, 郭俊明, 等. 电池, 2020, 50(1), 78.
18 Liu W H, Xu H H, Zhou Q H, et al. Journal of Electronic Materials, 2020, 49, 5523.
19 Huang M H, Liang X H, Zeng S B, et al. New Chemical Materials, 2017, 45(11), 198 (in Chinese).
黄美红, 梁兴华, 曾帅波, 等. 化工新型材料, 2017, 45(11), 198.
20 Li C C, Chen G, Zhang B, et al. Journal of the Chinese Rare Earth Society, 2009, 27(1), 156 (in Chinese).
李翠翠, 陈刚, 张彬, 等. 中国稀土学报, 2009, 27(1), 156.
21 Arumugam D, Kalaignan G P, Manisankar P. Solid State Ionics, 2008, 179(15), 5806.
22 Chen M, Li S J, Yang C. Materials, 2008, 4(15), 468.
23 Wang T, Peng W, Yang X L, et al. Chinese Rare Earths, 2017, 38(5), 8 (in Chinese).
汪涛, 彭文, 杨续来, 等. 稀土, 2017, 38(5), 8.
24 Tang Z Y, Feng J J. Acta Physico-Chimica Sinica, 2003(11), 1025 (in Chinese).
唐致远, 冯季军. 物理化学学报, 2003(11), 1025.
25 Li Y, Tao Y, Bai H L, et al. The Chinese Journal of Nonferrous Metals, 2021, 31(8), 2198 (in Chinese).
李燕, 陶扬, 白红丽, 等. 中国有色金属学报, 2021, 31(8), 2198.
26 Zhu C Y, Liu J X, Zhang Y J, et al. Ceramics International, 2019, 45, 19351.
27 Yang Z R, Wang Y J, Chen X C, et al. Chemistry Select, 2019, 4(33), 9583.
28 Liu H L, Li M, Xiang M W, et al. Journal of Colloid and Interface Science, 2021, 585, 729.
29 Taddesse P, Veeraiah V, Babu K V, et al. Physica B-Condensed Matter, 2019, 559, 17.
30 Pan K M, Hu C, Sun Z Q, et al. Journal of Applied Electrochemistry, 2020, 50(4), 451.
31 Rao A V, Kumar B R. Journal of Electronic Materials, 2019, 48(2), 1091.
32 Rao A V, Kumar B R. Materials Letters, 2018, 227, 250.
33 Iqbal A, Iqbal Y, Khan A M, et al. Ionics, 2017, 23(8), 1995.
34 Guo Y J, Lu Y, Ning P, et al. Rare Metal Materials and Engineering, 2021, 50(12), 4525 (in Chinese).
郭昱娇, 卢瑶, 宁平, 等. 稀有金属材料与工程, 2021, 50(12), 4525.
35 Madhu M, Rao A V, Mutyala S. Journal of Electronic Materials, 2021, 50(9), 5141.
36 Yi T F, Zhu Y R, Zhu X D, et al. Ionics, 2009, 15(6), 779.
37 Yuan M M, Xu R H, Yao Y C. Materials Reports, 2020, 34(19), 19061 (in Chinese).
袁梅梅, 徐汝辉, 姚耀春. 材料导报, 2020, 34(19), 19061.
38 Wang Z L. Journal of Physical Chemistry B, 2000, 104(6), 1153.
39 Kim J S, Kim K S, Cho W, et al. Nano letters, 2012, 12, 6358.
40 Luo X Y, Xiang M W, Li Y, et al. Vacuum, 2020, 179, 109505.
41 Cai Y J, Huang Y D, Wang X C, et al. Ceramics International, 2014, 40, 14039.
42 Liu Q, Zhong L, Guo Y J, et al. Journal of Alloys and Compounds, 2021, 874, 159912.
43 Li F K, Liu Z B, Shen J D, et al. Nanomaterials, 2020, 10(12), 2495.
44 Li F K, Liu Z B, Xu X J, et al. Journal of the Chinese Ceramic Society, 2022, 50(1), 1 (in Chinese).
李方坤, 刘政波, 许希军, 等. 硅酸盐学报, 2022, 50(1), 1.
45 Liu J T, Li G, Yu Y, et al. Journal of Alloys and Compounds, 2017, 728, 1315.
46 Wang S M, Xiang M W, Lu Y, et al. Journal of Materials Science:Materials in Electronics, 2020, 31(8), 6036.
47 Duan Y Z, Zhu J Y, Guo J M, et al. Chemical Journal of Chinese Universities, 2019, 40(12), 2574 (in Chinese).
段玉珍, 朱金玉, 郭俊明, 等. 高等学校化学学报, 2019, 40(12), 2574.
48 Gu H Y, Wang G J, Zhu C C, et al. Electrochimica Acta, 2019, 298, 806.
49 Yoshio M, Noguchi H, Wang H, et al. Journal of Power Sources, 2006, 154, 273.
50 Xiao Y, Zhang X D, Zhu Y F, et al. Advanced Science, 2019, 6(13), 1801908.
51 Chou S L, Wang J Z, Sun J Z, et al. Chemistry of Materials, 2008, 20, 7044.
[1] 崔春娟, 赵亚男, 刘跃, 武重洋, 张凯, 王妍, 魏剑. 花瓣状纳米硫和球状纳米硫的制备及性能[J]. 材料导报, 2023, 37(5): 21080095-11.
[2] 虞亚霖, 莫岩, 陈永, 李德. LiNO3-LiOH熔盐法制备单晶LiNi0.75Co0.10Mn0.15O2正极材料[J]. 材料导报, 2023, 37(4): 21050208-6.
[3] 王娜, 费杰, 郑欣慧, 赵蓓, 杨甜. 碳布基自支撑锂/钠离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(4): 20090256-9.
[4] 陈喜, 杨春利, 黄江龙, 张浩, 王靖. 高电压钴酸锂正极材料研究进展[J]. 材料导报, 2023, 37(13): 21070223-14.
[5] 谢焕玲, 赵秋月, 张廷安, 李杨. 三元镍钴锰前驱体制备方法的研究现状[J]. 材料导报, 2022, 36(Z1): 21060186-9.
[6] 胡思思, 刘倩, 李文, 王波. 三维大骨架结构FeSe2材料的制备及储锂机理研究[J]. 材料导报, 2022, 36(8): 21010183-5.
[7] 张琴, 胡耀波, 王润, 王俊. 镁离子电池正极材料的研究现状[J]. 材料导报, 2022, 36(7): 20050125-11.
[8] 侯璞, 张九州, 寻之玉, 霍鹏飞. 聚氨酯基聚合物电解质的应用进展[J]. 材料导报, 2022, 36(5): 20060009-9.
[9] 杨文飞, 张钟元, 张雪, 王轶农, 郭显娥, 董星龙. 多组元Ni/NiO/rGO纳米复合材料的制备及电化学储锂性能[J]. 材料导报, 2022, 36(23): 21060194-8.
[10] 曹鹏飞, 刘雅婷, 陈妮, 汤文静, 李福枝, 夏勇, 孙翱魁. 水系锌离子电池正极材料的研究进展[J]. 材料导报, 2022, 36(23): 21010239-13.
[11] 王雅君, 白秋红, 伍根成, 王正, 李聪, 申烨华. 纳米纤维素基复合材料及其用于柔性储能器件的研究进展[J]. 材料导报, 2022, 36(23): 21010198-7.
[12] 胡竟志, 徐照华, 沈超, 谢科予. 三维打印技术在电化学储能器件中的应用研究进展[J]. 材料导报, 2022, 36(20): 20100151-11.
[13] 张佰伦, 王凯, 李嘉辉, 钟海长, 张文魁, 章文献, 梁初. 锂离子电池用纳米碳材料研究进展[J]. 材料导报, 2022, 36(20): 21050286-13.
[14] 胡坤, 郭锦, 张敏刚, 连晋毅, 张怡轩, 李占龙. 金属化合物在锂硫电池正极材料及夹层中的应用[J]. 材料导报, 2022, 36(19): 21010010-11.
[15] 郝娴, 梁峰, 李红霞, 曹云波, 王晓函, 张海军. 纳米碳化钛的制备及在储能领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 1-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed