Please wait a minute...
材料导报  2022, Vol. 36 Issue (19): 21010010-11    https://doi.org/10.11896/cldb.21010010
  无机非金属及其复合材料 |
金属化合物在锂硫电池正极材料及夹层中的应用
胡坤1, 郭锦2, 张敏刚2, 连晋毅1, 张怡轩2, 李占龙1
1 太原科技大学机械工程学院,太原 030024
2 太原科技大学材料科学与工程学院,太原 030024
Application of Metal Compounds in Cathode Materials and Interlayers for Lithium-Sulfur Batteries
HU Kun1, GUO Jin2, ZHANG Mingang2, LIAN Jinyi1, ZHANG Yixuan2, LI Zhanlong1
1 School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
2 School of Material Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 6768KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在能源危机的驱使下,电动汽车以及大型储能装置的快速发展需要高能量密度的锂二次电池来实现,锂硫电池硫电极因具有高理论比容量和能量密度而倍受关注。此外,单质硫具有储量丰富、成本低和无毒等优点,使得锂硫电池更具有商业竞争力,因此锂硫电池被认为是最有前途的二次电池之一。
然而,锂硫电池依然存在电导率低、穿梭效应、体积膨胀和锂枝晶等问题,这限制其广泛应用。因此,研究者们从正极材料和夹层着手,除了对正极材料的导电性加以改善之外,主要从限制多硫化物的穿梭效应和缓冲正极体积膨胀进行研究。研究发现,相比碳基和聚合物基正极材料,金属化合物基正极材料可以更好地改善锂硫电池的倍率性能和循环稳定性。此外,金属化合物材料作为夹层时同样可以有效缓解这些问题,能够更好地抑制多硫化物的溶解和扩散,减少穿梭效应,提高锂硫电池的电化学性能。
一些金属氧化物、金属硫化物、金属氮化物、金属磷化物等作为锂硫电池正极材料或夹层都取得了重大进展。对于部分极性金属化合物而言,其不仅能化学吸附充放电中间产物多硫化物,有效改善硫正极的循环稳定性,而且还能在氧化还原反应中表现出电催化活性,加快多硫化物的转化,提高硫正极的倍率性能。
本文综述了近年来金属化合物基正极材料及夹层的研究进展并对其发展前景进行了展望,以期为制备优异性能的锂硫电池正极材料及夹层提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡坤
郭锦
张敏刚
连晋毅
张怡轩
李占龙
关键词:  锂硫电池  正极材料  夹层  金属化合物    
Abstract: In the press of energy crisis, the rapid development of electric vehicles and large-scale energy storage devices need to rely on lithium secondary batteries with higher energy density. Sulfur electrode of lithium-sulfur batteries has attracted a lot of attention due to its high theoretical specific capacity and energy density. In addition, elemental sulfur has the advantages of abundant reserves, low cost and non-toxicity, which could make lithium-sulfur batteries more competitive, and be considered as one of the most promising secondary batteries.
However, the application of lithium-sulfur batteries is still restricted due to the low conductivity, shuttle effect, volume expansion, lithium dendrite and so on. Therefore, in addition to improving the conductivity of the material, the researchers studied the cathode materials and interlayer mainly from how to limit the shuttle effect of polysulfides and buffer the volume expansion of the cathode. It is found that metal compounds based cathode materials can improve the rate performance and cycle stability of lithium-sulfur batteries, which are better than the carbon based and polymer based cathode materials. In addition, metal compounds as interlayers can also effectively alleviate these problems, which can better inhibit the dissolution and diffusion of polysulfides, reduce the shuttle effect and improve the electrochemical performance of lithium-sulfur batteries.
Some metal oxides, metal sulphides, metal nitrides and metal phosphates have made great progress as cathode materials or interlayers for lithium-sulfur batteries. For some polar metal compounds, they can not only chemisorption intermediate polysulfide during the charge and discharge process, effectively improving the cycle performance of sulfur cathode, but also deliver electrocatalytic activity in redox reaction, thus promoting the polysulfides conversion and improving the rate property of sulfur cathode.
This paper introduces the latest research progress of metal compounds based cathode materials and interlayer for lithium-sulfur batteries and prospects their future development. We expect this review to provide a reference for the preparation of cathode materials and interlayers with excellent performance.
Key words:  Lithium-sulfur batteries    cathode materials    interlayers    metal compounds
出版日期:  2022-10-10      发布日期:  2022-10-12
ZTFLH:  TM912  
基金资助: 山西省科技平台项目(201805D121005);山西省高等学校科技创新项目(2020L0354);太原科技大学科研启动基金(20192035);晋城市科技计划项目(20198037)
通讯作者:  lizl@tyust.edu.cn   
作者简介:  胡坤,2019年6月毕业于太原学院,获得工学学士学位。现为太原科技大学机械工程学院硕士研究生,在李占龙副教授的指导下进行研究。目前主要研究领域为新能源汽车。
李占龙,副教授,硕士研究生导师,企业博士后,山西省振动工程学会理事。主持并在研国家自然科学基金1项、中国博士后科学基金面上项目1项、山西省高校科技创新项目1项;参与国家自然科学基金2项、省级项目5项及多项企业工程项目。主要研究领域为新能源车辆驱动技术、非路面车辆动力学及控制。发表相关论文20余篇。
引用本文:    
胡坤, 郭锦, 张敏刚, 连晋毅, 张怡轩, 李占龙. 金属化合物在锂硫电池正极材料及夹层中的应用[J]. 材料导报, 2022, 36(19): 21010010-11.
HU Kun, GUO Jin, ZHANG Mingang, LIAN Jinyi, ZHANG Yixuan, LI Zhanlong. Application of Metal Compounds in Cathode Materials and Interlayers for Lithium-Sulfur Batteries. Materials Reports, 2022, 36(19): 21010010-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010010  或          http://www.mater-rep.com/CN/Y2022/V36/I19/21010010
1 Bruce P G, Freunberger S A, Hardwick L J, et al. Nature Materials, 2012, 11, 19.
2 Larcher D, Tarascon J M. Nature Chemistry, 2015, 7(1), 19.
3 Rosenman A, Markevich E, Salitra G, et al. Advanced Energy Materials, 2015, 5(16), 1.
4 Manthiram A, Fu Y, Chung S H, et al. Chemical Reviews, 2014, 114(23), 11751.
5 Evers S, Nazar L F. Accounts of Chemical Research, 2013, 46(5), 1135.
6 Chen L, Shaw L L. Journal of Power Sources, 2014, 267, 770.
7 Sun Y, Liu N, Cui Y. Nature Energy, 2016, 1(7), 16071.
8 Manthiram A, Fu Y, Su Y S. Accounts of Chemical Research, 2012, 46(5), 1125.
9 Fang X, Peng H. Small, 2015, 11, 1488.
10 Yin Y X, Xin S, Guo Y G, et al. Angewandte Chemie, 2013, 52(50), 13186.
11 Peng H J, Huang J Q, Cheng X B, et al. Advanced Energy Materials, 2017, 7(24), 17002604.
12 Evers S, Nazai L F. Accounts of Chemical Research, 2013, 46(5), 1135.
13 Yang Y, Zheng G, Cui Y. Chemical Society Reviews, 2013, 42(7), 3018.
14 Liu D H, Zhang C, Zhou G M, et al. Advance Science, 2018, 5(1), 1700270.
15 Xu N, Qian T, Liu X J, et al. Nano letters, 2016, 17(1), 538.
16 Mikhaylik Y V, Akridge J R. Journal of the Electrochemical Society, 2004, 151, A1969.
17 Zhou L, Yu A S. Journal of Electrochemistry, 2015, 21(3), 211 (in Chinese).
周兰, 余爱水. 电化学, 2015, 21(3), 211.
18 Seh Z W, Li W Y, Cha J J, et al. Nature Communications, 2013, 4(1), 1331.
19 Hwang J, Kim H M, Lee S, et al. Advanced Energy Materials, 2016, 6(1), 1501480.
20 Li Y, Cai Q, Wang L, et al. ACS Applied Materials & Interfaces, 2016, 8(36), 23784.
21 Fang M M, Chen Z M, Xu Q, et al. Journal of Materials Chemistry A, 2017, 6(4), 1630.
22 Ma L B, Chen R P, Zhu G Y, et al. ACS Nano, 2017, 11(7), 7274.
23 Qi W T, Jiang W, Xu F, et al. Chemical Engineering Journal, 2019, 382, 122852.
24 Ni L B, Zhao G J, Yang G, et al. ACS Applied Materials & Interfaces, 2017, 9(40), 34793.
25 Chen M F, Lu Q, Jiang S X, et al. Chemical Engineering Journal, 2018, 335, 831.
26 He J R, Luo L, Chen Y F, et al. Advanced Materials, 2017, 29(34), 1702707.
27 Lin H B, Yang L Q, Jiang X, et al. Energy & Environmental Science, 2017, 10(6), 1476.
28 Zhang D A, Wang Q, Wang Q, et al. Electrochimica Acta, 2015, 173, 476.
29 Dai C, Lim J, Wang M, et al. Advanced Functional Materials, 2018, 28(14), 1704443.
30 Chen T, Ma L B, Cheng B R, et al. Nano Energy, 2017, 38, 239.
31 Tong W, Huang Y D, Jia W, et al. Journal of Alloys and Compounds, 2017, 731, 964.
32 Ye C, Zhang L, Guo C , et al. Advanced Functional Materials, 2017, 27(33), 1702524.
33 Wang Y K, Zhang R F, Pang Y C, et al. Energy Storage Materials, 2019, 16, 228.
34 Deng D R, An T H, Li Y J, et al. Journal of Materials Chemistry A, 2016, 4(41), 16184.
35 Xu Z L, Kim J K, Kang K. Nano Today, 2018, 19, 84.
36 Yang Y, Zheng G Y, Cui Y. Chemical Society Reviews, 2013, 42(7), 3018.
37 Hu Y, Chen W, Lei T, et al. Nano Energy, 2019, 68, 104373.
38 Zhang R, Cheng X B, Zhao C Z, et al. Advanced Materials, 2016, 28(11), 2155.
39 Liu S T, Li Y H, Zhang C, et al. Electrochimica Acta, 2020, 332, 135458.
40 Zhang Y J, Yao S S, Zhuang R Y, et al. Journal of Alloys and Compounds, 2017, 729, 1136.
41 Zhu M Q, Li S M, Liu J H, et al. Applied Surface Science, 2019, 473(15), 1002.
42 Li Z, Zhang J, Lou X W D. Angewandte Chemie International Edition, 2015, 54(44), 12886.
43 Liang X, Nazar Linda F. ACS Nano, 2016, 10(4), 4192.
44 Wu J, Pan Z J, Dai Y, et al. Journal of Alloys and Compounds, 2020, 823, 153912.
45 Chen Y X, Ji X B. Journal of Alloys and Compounds, 2019, 777, 688.
46 Ye B J, Feng C H, Zhu G H, et al. Journal of Alloys and Compounds, 2020, 823, 153743.
47 Yuan G H, Jin H F, Geng M, et al. Materials Letters, 2020, 270, 127690.
48 Zhuang R Y, Yao S S, Shen X Q, et al. Journal of Electroanalytical Chemistry, 2019, 833, 411.
49 Gao C, Fang C Z, Zhao H M, et al. Journal of Power Sources, 2019, 421, 132.
50 Pang Q, Kundu D, Nazar L. Materials Horizons, 2016, 3(2), 130.
51 Lei T Y, Chen W, Huang J W, et al. Advanced Energy Materials, 2016, 7(4), 1601843.
52 Chen T , Zhang Z W, Cheng B R, et al. Journal of the American Chemical Society, 2017, 139(36), 12710.
53 Walle M D, Zeng K, Zhang M Y, et al. Applied Surface Science, 2019, 473(15), 540.
54 Yi Y K, Liu Z C, Yang P, et al. Journal of Energy Chemistry, 2020, 45, 18.
55 Tian Y X, Huang H W, Liu G X, et al. Chemical Communications, 2019, 55, 3243.
56 Sun Z H, Zhang J Q, Yin L C, et al. Nature Communications, 2017, 8(1), 652.
57 Zhang H, Tian D X, Zhao Z B, et al. Energy Storage Materials, 2019, 21, 210.
58 Li H X, Ma S, Cai H Q, et al. Energy Storage Materials, 2019, 18, 338.
59 Wang Z, Liu J, Sun L Q, et al. Chemistry-A European Journal, 2018, 24(53), 14154.
60 Yuan H, Chen X, Zhou G, et al. ACS Energy Letters, 2017, 2(7), 1711.
61 Mi Y Y, Liu W, Li X L, et al. Nano Research, 2017, 10(11), 3698.
62 Wang Z S, Shen J D, Liu J, et al. Advanced Materials, 2019, 31(33), 1902228.
63 Shen J D, Xu X J, Liu J, et al. ACS Nano, 2019, 13(8), 8986.
64 Li C C, Liu X B, Zhu L, et al. Chemistry of Materials, 2018, 30, 6969.
65 Wu Y, Xiao Q, Huang S P, et al. Materials Chemistry and Physics, 2019, 221, 258.
66 Liu H, Chen Z, Zhou L, et al. Journal of Materials Chemistry A, 2019, 7(12), 7074.
67 Manthiram A, Su Y S. Chemical Communications, 2012, 48,8817.
68 Liu X, Feng P L, Hou W S, et al. Journal of Chemical Industry and Engineering, 2020, 71(9), 4031.(in Chinese)
刘鑫, 冯平丽, 侯文烁, 等. 化工学报, 2020, 71(9), 4031.
69 Liu M, Li Q, Qin X Y, et al. Small, 2017, 13(12), 1602539.
70 Liu X W, Li Z H, Liao X B, et al. Journal of Materials Chemistry A, 2020, 8(24), 12106.
71 Kong W, Yan L, Luo Y, et al. Advanced Functional Materials, 2017, 27(18), 1606663.
72 Hu N N, Lv X S, Dai Y, et al. ACS Applied Materials & Interfaces, 2018, 10(22), 18665.
73 Lin H B, Zhang S L, Zhang T R, et al. ACS Nano, 2019, 13(6), 7073.
74 Ma Z L, Li Z, Hu K, et al. Journal of Power Sources, 2016, 325, 71.
75 Tan L, Li X H,Wang Z X, et al. ACS Applied Materials & Interfaces, 2018, 10(4), 3707.
76 Park J, Yu B, Park J S, et al. Advanced Energy Materials, 2017, 7(11), 1602567.
77 Cai W L, Li G R, Zhang K L, et al. Advanced Funcation Matericals, 2018, 28(2), 1704865.
78 Chen X X, Ding X Y, Wang C S, et al. Nanoscale, 2018, 10(28), 13694.
79 Fan Y, Yang Z, Hua W X, et al. Advanced Energy Materials, 2017, 7(13), 1602380.
[1] 张琴, 胡耀波, 王润, 王俊. 镁离子电池正极材料的研究现状[J]. 材料导报, 2022, 36(7): 20050125-11.
[2] 赵文文, 王韵芳, 段东红, 刘世斌, 周娴娴, 陈良. 金属有机骨架衍生的层状Co3O4/C在锂硫电池中的应用[J]. 材料导报, 2022, 36(6): 20120257-7.
[3] 张苗, 魏志祥, 常晶晶. 柔性锂硫电池电极材料的结构设计[J]. 材料导报, 2022, 36(11): 21010030-11.
[4] 冯阳, 汪港, 陈君妍, 康卫民, 邓南平, 程博闻. 高性能锂硫电池研究进展与改进策略[J]. 材料导报, 2022, 36(11): 20080027-14.
[5] 郝娴, 梁峰, 李红霞, 曹云波, 王晓函, 张海军. 纳米碳化钛的制备及在储能领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 1-8.
[6] 贾政刚, 张学习, 钱明芳, 耿林, 熊岳平. 全固态锂硫电池中界面问题的研究现状[J]. 材料导报, 2021, 35(9): 9097-9107.
[7] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[8] 李晓丹, 胡心雨, 刘小平, 刘小清, 申渝, 唐莹, 冯佳成. 苯并噁嗪树脂的研究新进展:智能化应用及能源、环境领域应用[J]. 材料导报, 2021, 35(3): 3209-3218.
[9] 汪仕杰, 肖慧, 任玉荣, 黄小兵, 王海燕. Na3V2(PO4)3/CN/rGO复合正极材料的构筑及储钠性能研究[J]. 材料导报, 2021, 35(24): 24006-24010.
[10] 李欢, 何妍妍, 周国伟. 普鲁士蓝及普鲁士蓝类化合物材料在钠离子电池中的研究进展[J]. 材料导报, 2021, 35(23): 23050-23056.
[11] 王皓, 李峻峰, 马悦, 杨亚楠, 张佩聪, 赖雪飞, 岳波. 锂离子电池钒系电极材料的研究进展[J]. 材料导报, 2021, 35(21): 21127-21142.
[12] 王萍, 俞科静, 钱坤, 李永胜, 王纬波. 剪切增稠液在阻尼减振技术中的应用研究[J]. 材料导报, 2021, 35(17): 17218-17224.
[13] 魏安柯, 王磊, 王祎. 金属-有机骨架(MOFs)用于锂硫电池硫正极材料改性的研究进展[J]. 材料导报, 2021, 35(13): 13052-13057, 13066.
[14] 周建峰, 翟鑫华, 张盼盼, 何亚鹏, 董劲, 黄惠, 郭忠诚. 富锂锰基正极材料结构优化及晶面调控研究进展[J]. 材料导报, 2021, 35(11): 11057-11065.
[15] 田庆华, 邹艾玲, 童汇, 喻万景, 张佳峰, 郭学益. 废旧三元锂离子电池正极材料回收技术研究进展[J]. 材料导报, 2021, 35(1): 1011-1022.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed