Please wait a minute...
材料导报  2021, Vol. 35 Issue (21): 21127-21142    https://doi.org/10.11896/cldb.20060110
  无机非金属及其复合材料 |
锂离子电池钒系电极材料的研究进展
王皓1, 李峻峰1, 马悦1, 杨亚楠1, 张佩聪1, 赖雪飞2, 岳波3
1 成都理工大学材料与化学化工学院,成都 610059
2 四川大学化学工程学院,成都 610065
3 四川新锂想能源科技有限责任公司,射洪 629200
Review of Vanadium-based Electrode Materials for Lithium Ion Batteries
WANG Hao1, LI Junfeng1, MA Yue1, YANG Yanan1, ZHANG Peicong1, LAI Xuefei2, YUE Bo3
1 College of Materials and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
2 School of Chemical Engineering, Sichuan University, Chengdu 610065, China
3 Sichuan Xinlixiang Energy Technology Co., Ltd., Shehong 629200, China
下载:  全 文 ( PDF ) ( 23518KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锂离子电池电极材料对锂离子电池性能提升起着关键作用。钒的价态较多,构成的钒系电极材料具有层状、尖晶石型、反尖晶石型等多种结构。该系列材料通常具有较高的理论比容量,且合成方式多样,性价比高,因此钒系化合物在锂离子电池电极材料的应用上受到了广泛关注,但目前尚缺少对钒系电极材料的系统性总结。本文综述了以钒的氧化物、无锂型金属离子钒酸盐、含锂型钒酸盐及钒磷酸根聚阴离子材料为主要体系的锂离子电池钒系电极材料,并对各体系的结构及电化学性能进行了总结,针对合成锂离子电池钒系电极材料的主要方法(如固相合成法、溶胶-凝胶法、水热法、碳热还原法、液相沉淀法等)进行概述及分析,还对通过纳米化、特殊形貌控制、复合改性等其他改性方式优化的钒系电极材料的性能进行了介绍,最后对钒系锂离子电池电极材料的研究方向和发展前景进行展望,希望对促进该类材料的研究与产业化应用能有所助益。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王皓
李峻峰
马悦
杨亚楠
张佩聪
赖雪飞
岳波
关键词:  锂钒化合物  锂离子电池  正极材料  负极材料    
Abstract: To improve the performance of lithium ion batteries, the electrode materials are a key point. Vanadium has rich variable valence state, and the vanadium-based electrode materials are under a variety of structures with layered-structure, spinel and anti-spinel structure. Vanadium-based electrode materials have the properties of higher theoretical specific capacity, various synthesis methods and cost-effective. The application of vanadium-based compounds have attracted extensive attention in lithium ion battery electrode materials. However, it is still lack of a systematic summary of vanadium-based electrode materials. This paper reviews the structure and electrochemical performance of promising electrode mate-rials for lithium ion batteries of vanadium-based electrode materials, which mainly include vanadium oxide, lithium-free vanadate, lithium-containing vanadate and lithium vanadium phosphate. Methods for synthesis of vanadium-based electrode materials are summarized, including solid phase synthesis, sol-gel synthesis, hydrothermal synthesis, carbothermal reduction synthesis, and liquid phase precipitation synthesis. The methods to optimize the defects of vanadium electrode materials by controlling of nano-crystallization, morphology and composite are also concluded. Finally, an outlook on potential breakthroughs for vanadium-based electrode materials will be provided.
Key words:  lithium vanadium compound    lithium-ion battery    cathode material    anode material
               出版日期:  2021-11-10      发布日期:  2021-11-30
ZTFLH:  TM912  
基金资助: 四川钒钛产业发展研究中心开放项目(2018VTCY-Z-01);四川省教育厅自然科学重点项目(18ZA0062);四川省科技厅重大科技专项(2019ZDZX0025)
通讯作者:  lijunfeng@cdut.cn   
作者简介:  王皓,2018年6月毕业于成都理工大学工程技术学院,获得工学学士学位。现为成都理工大学材料与化学化工学院硕士研究生,在李峻峰教授的指导下进行研究。目前主要研究领域为锂离子电池非晶态正极材料。
李峻峰,成都理工大学材料与化学化工学院教授、硕士研究生导师。2000年6月本科毕业于四川大学材料学院无机非金属材料专业,2005年6月在成都理工大学材料学专业获硕士学位,2009年6月在四川大学医学工程专业取得博士学位。主要从事新材料开发与应用相关的研究工作,具体包括稀土发光及催化材料、锂离子电池电极材料、骨修复材料。近年来,发表科研学术论文100篇,申请国家发明专利30项。
引用本文:    
王皓, 李峻峰, 马悦, 杨亚楠, 张佩聪, 赖雪飞, 岳波. 锂离子电池钒系电极材料的研究进展[J]. 材料导报, 2021, 35(21): 21127-21142.
WANG Hao, LI Junfeng, MA Yue, YANG Yanan, ZHANG Peicong, LAI Xuefei, YUE Bo. Review of Vanadium-based Electrode Materials for Lithium Ion Batteries. Materials Reports, 2021, 35(21): 21127-21142.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060110  或          http://www.mater-rep.com/CN/Y2021/V35/I21/21127
1 Liu J R, Wang M, Yin D C, et al. Materials Reports, 2001(7), 32(in Chinese).
刘建睿, 王猛, 尹大川, 等.材料导报, 2001(7), 32.
2 Song F. Fujian Metallurgy, 2017, 46(1), 46(in Chinese).
宋阜. 福建冶金, 2017, 46(1), 46.
3 Liu L, Bao S S, He H, et al. Electronic Components and Materials, 2017, 36(12), 58.
刘磊, 包珊珊, 何欢, 等. 电子元件与材料, 2017, 36(12), 58.
4 Mai L Q, Zou Z G, Chen H Y. Materials Reports, 2000(7), 32(in Chinese).
麦立强, 邹正光, 陈寒元. 材料导报, 2000(7), 32.
5 Noh H J, Youn S, Yoon C S, et al. Journal of Power Sources, 2013, 233, 121.
6 Li W W, Pan Q X, Yao L, et al. Chinese Journal of Power Sources, 2013, 37(7), 1247 (in Chinese).
李伟伟, 潘全香, 姚路, 等. 电源技术, 2013, 37(7), 1247.
7 Hui Y, LI J, Zhang X G, et al. Journal of Materials Processing Technology, 2008, 207(1), 265.
8 Liu H, Wang Y, Wang K, et al. Journal of Power Sources, 2009, 192(2), 668.
9 Pan A, Zhang J G, Cao G, et al. Journal of Materials Chemistry, 2011, 21(27), 10077.
10 Ma H, Yuan Z, Cheng F, et al. Journal of Alloys & Compounds, 2011, 509(20), 6030.
11 Chen P, Zheng G, Guo G, et al. Journal of Alloys and Compounds, 2019, 784, 574.
12 Mo J, Zhang X M, Liu J J, et al. Chinese Journal of Chemistry, 2017, 35(12), 1789.
13 Leroux C, Nihoul G, Tendeloo G V. Physical Review B, 1998, 57(9), 5111.
14 Xia C, Lin Z, Zhou Y, et al. Advanced Materials, 2018, 30(40), 1803594.1.
15 Yang S, Gong Y, Liu Z, et al. Nano Letters, 2013, 13(4), 1596.
16 Franz R, Mitterer C. Surface & Coatings Technology, 2013, 228, 1.
17 Zhou J, Chen W, Yao H, et al. Journal of Molecular Science, 2001, 17(2), 71(in Chinese).
周静, 陈文, 姚欢, 等. 分子科学学报, 2001, 17(2), 71.
18 Chernova N A, Roppolo M, Dillon A C, et al. Journal of Materials Che-mistry, 2009, 19(17), 2526.
19 Liang X, Gao G H, Wu G M. Materials Reports, 2018, 32(1), 12(in Chinese).
梁兴, 高国华, 吴广明. 材料导报, 2018, 32(1), 12.
20 Liu Y C. Synthesis and electrochemical performance of lithium-ion battery cathode materials V6O13 and VO2(B). Master's Thesis, Guilin University of Technology, China, 2011 (in Chinese).
刘元春. 锂离子电池正极材料V6O13和VO2(B)的合成及其电化学性能研究. 硕士学位论文, 桂林理工大学, 2011.
21 Mcnulty D, Bbucley D N, O'dwyer C. ChemElectroChem, 2017, 4(8), 2037.
22 Li Z, Liu G, Guo M, et al. Electrochimica Acta, 2015, 173, 131.
23 Mohan V M, Murakami K, Chen W. Ionics, 2012, 18(6), 607.
24 Murrhy D, Christian P, Disalvo F, et al. Journal of the Electrochemical Society, 1979, 126(3), 497.
25 Zou Z G, Cheng H, He J Y, et al. Journal of Synthetic Crystals, 2013, 42(7), 001396(in Chinese).
邹正光, 程浩, 何金云, 等. 人工晶体学报, 2013, 42(7), 001396.
26 Zhang D, Li G S, Li B Y, et al. Journal of Alloys and Compounds, 2019, 789, 288.
27 Zeng S, Wang C, Li H, et al. Chemistry Letters, 2019, 48(4), 367.
28 Ma Y, Li W, Ji S, et al. Materials Research Express, 2017, 4(8), 085033.
29 Du L Y, Lin H J, Ma Z Y, et al. Journal of Power Sources, 2019, 424, 158.
30 Liu X, Cao Y, Zheng H, et al. Applied Surface Science, 2017, 394, 183.
31 Si Y C, Liu G N, Deng C H, et al. Journal of Electroanalytical Chemistry, 2017, 787, 19.
32 Ma H, Ji W Q, Yang X J, et al. Science in China(Series B:Chemistry), 2009, 39(9), 918(in Chinese).
马华, 冀伟强, 杨晓婧, 等. 中国科学(B辑:化学), 2009, 39(9), 918.
33 Fang Z, Fan F, Ding Z K, et al. Materials Research Bulletin, 2013, 48(4), 1737.
34 Yan N, Xu Y, Li H, et al. Materials Letters, 2016, 165, 223.
35 Zhu X, Jiang X, Xiao L, et al.Current Applied Physics, 2015, 15(4), 435.
36 Lu J S, Maggay I V B, Liu W R. Chemical Communications, 2018, 54(25), 3094.
37 Ma J, Ni S, Zhang J, et al. Physical Chemistry Chemical Physics, 2015, 17(33), 21442.
38 Prahasini P, Subadevi R, Wang F M, et al. Ionics, 2016, 22(3), 347.
39 Tang Y, Zhou J, Liu J, et al. International Journal of Electrochemical Science, 2013, 8(1), 1138.
40 Wu M Q, Yang J, Chen C, et al. New Journal of Chemistry, 2018, 42(7), 4881.
41 Patoux S, Richardson T J. Electrochemistry Communications, 2007, 9(3), 485.
42 Denis S, Baudrin E, Touboul M, et al. Journal of the Electrochemical Society, 1997, 144(12), 4099.
43 Fu X, Pu X, Wang H, et al. Physical Chemistry Chemical Physics, 2019, 21(13), 7009.
44 Wang W J, Wang H Y, Liu S Q, et al. Journal of Solid State Electrochemistry, 2012, 16(7), 2555.
45 Liu H D, Zhu Z Y, Yan Q H, et al. Nature, 2020, 585, 63.
46 Chen Z X, Xu F, Cao S A, et al. Small, 2017, 13(18), 1603148.
47 Li H, Liu X, Zhai T, et al. Advanced Energy Materials, 2013, 3(4), 428.
48 Han X Y, Tang W C, Yi Z H, et al. Journal of Applied Electrochemistry, 2008, 38(12), 1671.
49 Prakash D, Masuda Y, Sanjeeviraja C. Powder Technology, 2013, 235, 454.
50 Zhang M X, Xue Y H, Zhang Y X. Chemistry, 2012, 75(10), 935(in Chinese).
张孟雄, 薛迎辉, 张友祥. 化学通报, 2012, 75(10), 935.
51 Li M L, Yang X, Wang C Z, et al. Journal of Materials Chemistry A, 2015, 3(2), 586.
52 Benabed Y, Castro L, Penin N, et al. Chemistry of Materials, 2017, 29(21), 9292.
53 Jian X M. Synthesis and electrochemical performance of LiVO3 cathode materials for lithium ion batteries. Master's Thesis, Zhejiang University, China, 2014 (in Chinese).
简雪梅. 锂离子电池正极材料LiVO3的制备及其电化学性能. 硕士学位论文,浙江大学, 2014.
54 Huang Z, Cao L, Chen L, et al. The Journal of Physical Chemistry C, 2016, 120(6), 3242.
55 Jian X M, Tu J P, Qiao Y Q, et al. Journal of Power Sources, 2013, 236, 33.
56 Zhao H, Liu L, Zhang X, et al. Ceramics International, 2017, 43(2), 2343.
57 Wang H, Isobe J, Shimizu T, et al. Journal of Power Sources, 2017, 360, 150.
58 Zhang W, Feng L L, Zhang Y Y, et al. Battery Bimonthly, 2019, 49(2), 154(in Chinese).
张威, 冯莉莉, 张引引, 等. 电池, 2019, 49(2), 154.
59 Guo H, Liu L, Wei Q, et al. Electrochimica Acta, 2013, 94, 113.
60 Wang L, Deng L, Li Y, et al. Electrochimica Acta, 2018, 284, 366.
61 Sarbada V, Yedral L, Pshenova A, et al. Journal of Power Sources, 2020, 463, 9.
62 Zakharova G S, Thauer E, Wegener S A, et al. Journal of Solid State Electrochemistry, 2019, 23(7), 2205.
63 Liao C Y. Electrochemical mechanism study and doping modification of Li3VO4 anode for lithium ion batteries. Master's Thesis, Huazhong University of Science and Technology, China, 2017 (in Chinese).
廖超怡. 锂离子电池钒酸锂负极材料的电化学机理研究及其掺杂改性.硕士学位论文,华中科技大学, 2017.
64 Prakash D, Masuda Y, Sanjeeviraja C. Ionics, 2013, 19(1), 17.
65 Zhang C C, Wang Q S. Materials Reports, 2014, 28(S2), 216(in Chinese).
张昌春, 王启岁. 材料导报, 2014, 28(S2), 216.
66 Wickham D. Journal of Inorganic and Nuclear Chemistry, 1967, 29(10), 2545.
67 Cclemens O, Bauer M, Haberkorn R, et al. Zeitschrift für Anorganische und Allgemeine Chemie, 2011, 637(7-8), 1036.
68 Li Y Z, Ren M M, Wu Q D, et al. Chinese Journal of Power Sources, 2005, 29(2), 124(in Chinese).
李宇展, 任慢慢, 吴青端, 等. 电源技术, 2005, 29(2),124.
69 Zhu Y R, Zhou A N, Yi T F, et al. Chinese Journal of Power Sources, 2009, 33(6), 523 (in Chinese).
朱彦荣, 周安娜, 伊廷锋, 等. 电源技术, 2009, 33(6), 523.
70 Kuganathan N, Chroneos A. Scientific Reports, 2019, 9, 333.
71 Liu T T, Cui X M, Huang Z X, et al.Materials Reports, 2015, 29(S2), 242(in Chinese).
刘甜甜, 崔旭梅, 黄载春, 等. 材料导报, 2015, 29(S2), 242.
72 Nojima A, Sano A, Fujita S, et al. Journal of the Electrochemical Society, 2019, 166(15), A3731.
73 Barker J, Saidi M Y, Swoyer J L. Journal of the Electrochemical Society, 2003, 150(10), A1394.
74 Ma R, Shu J, Hou L, et al. Ionics, 2013, 19(5), 725.
75 Hou L, Shu J, Shui M, et al. Chinese Journal of Power Sources, 2011, 35(4), 465(in Chinese).
侯璐, 舒杰, 水淼, 等. 电源技术,2011, 35(4), 465.
76 Jeon M, Jin B S, KIM H S. Physica Status Solidia—Applications and Materials Science, 2018, 215(20), 1700935.
77 Rui X H, Yesibolati N, Li S R, et al. Solid State Ionics, 2011, 187(1), 58.
78 Li P, Wang P F, Yu H X, et al. Ceramics International, 2015, 41(9), 10766.
79 LI Y Z, Zhen Z, Ren M, et al. Electrochimica Acta, 2006, 51(28), 6498.
80 Zhong S K, Yin Z L, Wang Z X, et al. Transactions of Nonferrous Metals Society of China, 2006, 16, S708.
81 Luo Y X, Shui M, Shu J. Results in Physics, 2019, 14, 7.
82 Jiang Y, Xu W W, Chen D D, et al. Electrochimica Acta, 2012, 85, 377.
83 Gaubicher J, Wurm C, Goward G, et al. Chemistry of Materials, 2000, 12(11), 3240.
84 Mao W F, Tang H Q, Tang Z Y, et al. Ecs Electrochemistry Letters, 2013, 2(7), A69.
85 Boivin E, Chotard J N, Menetrie M, et al. Journal of Physical Chemistry C, 2016, 120(46), 26187.
86 Petnikota S, Toh J J, Li J Y, et al. Chemelectrochem, 2019, 6(2), 493.
87 Bae K Y, Jung Y H, Cho S H, et al. Journal of Alloys and Compounds, 2019, 784, 704.
88 Liang Z, Lin Z, Zhao Y, et al. Journal of Power Sources, 2015, 274, 345.
89 Choi N S, Kim J S, Yin R Z, et al. Materials Chemistry and Physics, 2009, 116(2-3), 603.
90 Fu P, Zhao Y, Dong Y, et al. Electrochimica Acta, 2006, 52(3), 1003.
91 Zhou J, Zhao B, Song J, et al. Solid State Ionics, 2018, 322, 30.
92 Cao J Q, Wang X Y, Tang A, et al. Journal of Alloys and Compounds, 2009, 479(1-2), 875.
93 Zhang C, Jiang Q, Liu A, et al. Carbohydrate Polymers, 2020, 237, 116134.
94 Chen S, Duan H, Zhao L, et al. Journal of Power Sources, 2019, 413, 250.
95 Xiao L F, Zhao Y Q Z, Yin J, et al. Chemistry—A European Journal, 2010, 15(37), 9442.
96 Ren M M, Zhou Z, Gao X P. Journal of Applied Electrochemistry, 2010, 40(1), 209.
97 Wei C L, He W, Zhang X D, et al. Journal of Materials Science-Materials in Electronics, 2016, 27(11), 11814.
98 Liu S Q, Li S C, Huang K L, et al. Chinese Journal of Power Sources, 2007, 31(2), 123 (in Chinese).
刘素琴, 李世彩, 黄可龙,等. 电源技术, 2007, 31(2), 123.
99 Yan J, Yuan W, Xie H, et al. Materials Letters, 2012, 71, 1.
100 Channu V S R, Rambabu B, Kumari K, et al. Colloids and Surfaces A—Physicochemical and Engineering Aspects, 2015, 481, 314.
101 Jin X, Lei B B, Wang J, et al.Journal of Alloys and Compounds, 2016, 686, 227.
102 Zhou H Y, Zhu Y C, Qian Y T.Chinese Journal of Inorganic Chemistry, 2011, 27(7), 1393.
103 Sajid M M, Shad N A, Khan S B, et al.Journal of Alloys and Compounds, 2019, 775, 281.
104 Gan L H, Deng D R, Zhang Y J, et al.Journal of Materials Chemistry A, 2014, 2(8), 2461.
105 Zhang B, Han Y D, Zheng J C, et al. Journal of Power Sources, 2014, 264, 123.
106 Sun X C, Cui C J, Li X C.New Chemical Materials, 2015, 43(7), 145(in Chinese).
孙兴川, 崔朝军, 李现常. 化工新型材料, 2015, 43(7), 145.
107 Fey G T K, Huang D L.Electrochimica Acta, 1999, 45(1-2), 295.
108 Zeng L, Xiao F, Wang J, et al.Journal of Materials Chemistry, 2012, 22(28), 14284.
109 Slubowska W, Kwatek K, Nowniski J L.Solid State Ionics, 2018, 319, 266.
110 Barker J, Saidi M Y, Swoyer J L.Journal of the Electrochemical Society, 2003, 150(9), A1267.
111 Barker J, Saidi M Y, Swoyer J L.Journal of the Electrochemical Society, 2003, 150(6), A684.
112 Zhong S K, Zhao B, Li Y H, et al.Journal of Wuhan University of Technology-Materials Science Edition, 2009, 24(3), 343.
113 Feng J, Liu X, Zhang X, et al. Journal of the Electrochemical Society, 2009, 156(9), A768.
114 Si Y, Zhao L, Yu Z, et al.Materials Letters, 2012, 72(4), 145.
115 Fey G T K, Chen K S.Journal of Power Sources, 1999, 81, 467.
116 Xiao B, Zhang B, Tang L B, et al. Ceramics International, 2018, 44(13), 15044.
117 Choi S H, Kang Y C.Chemistry—A European Journal, 2013, 19(51), 17305.
118 Luo L, Fei Y, Chen K, et al.Journal of Alloys and Compounds, 2015, 649, 1019.
119 Xu X N, Niu F E, Wang C S, et al.Chemical Engineering Journal, 2019, 370, 606.
120 Liu Z M, Fan Y L, Peng W J, et al.Ceramics International, 2015, 41(3), 4267.
121 Chang C, Xiang J, Shi X, et al.Electrochimica Acta, 2008, 53(5), 2232.
122 Zhu C, Shu J, Wu X, et al.Journal of Electroanalytical Chemistry, 2015, 759, 184.
123 Wang C, Cao Y, Luo Z, et al.Chemical Engineering Journal, 2017, 307, 382.
124 Yuan J, Hu X, Chen J X, et al. Journal of Materials Chemistry A, 2019, 7(15), 9289.
125 He G, Li L, Manthiram A.Journal of Materials Chemistry A, 2015, 3(28), 14750.
126 Hua K, Li X, Fang D, et al.Ceramics International, 2018, 44(10), 11307.
127 Wang Y P, Nie Z W, Pan A Q, et al. Journal of Materials Chemistry A, 2018, 6(16), 6792.
128 Ghani F, Raza A, Kyung D, et al. Applied Surface Science, 2019, 497, 143718.
129 Sambandam B, Soundharrajan V, Mathew V, et al. Journal of Materials Chemistry A, 2016, 4(38), 14605.
130 Qin Z Z, Pei J, Chen G, et al.New Journal of Chemistry, 2017, 41(13), 5974.
131 Zhang Q, Pei J, Chen G, et al. Advanced Materials Interfaces, 2017, 4(13), 7.
132 Zhang S, Hu R, Liu L, et al.Materials Letters, 2014, 124, 57.
133 Luo L, Fei Y Q, Chen K, et al. Journal of Alloys and Compounds, 2015, 649, 1019.
134 Li N, Gong H X, Qian Y T.Chinese Journal of Chemical Physics, 2013, 26(5), 597.
135 Zhang X F, Kuhnel R S, Schroeder M, et al.Journal of Materials Che-mistry A, 2014, 2(42), 17906.
136 Xiong Z, Zhang G, Xiong J, et al.Materials Letters, 2013, 111, 214.
137 Tang Y X, Zhang Y Y, Deng J Y, et al. Angewandte Chemie-Internatio-nal Edition, 2014, 53(49), 13488.
138 Liu X, Li B K, Yao L, et al.Journal of Nanoscience and Nanotechnology, 2019, 19(7), 4052.
139 Fei H, Lin Y, Wei M.Journal of Colloid and Interface Science, 2014, 425, 1.
140 Zhou X W, He T L, Chen X, et al. Journal of Materials Science-Mate-rials in Electronics, 2017, 28(15), 11098.
141 Zhao H L, Gao H X, Li B Q, et al.Materials Letters, 2019, 252, 215.
142 Wang Y H, Liu H, Zhu D, et al.Transactions of Nonferrous Metals So-ciety of China, 2011, 21(6), 1303.
143 Ni S B, Ma J J, Zhang J C, et al.Journal of Power Sources, 2015, 282, 65.
144 Cao Y, Chai D, Luo Z, et al. Journal of Colloid and Interface Science, 2017, 498, 210.
145 Wang Z K, Shu J, Zhu Q C, et al. Journal of Power Sources, 2016, 307, 426.
146 Zhang S, Hou M, Hou L, et al.Chemical Physics Letters, 2016, 658, 203.
147 Chen Z H, Chen Q Y, Wang H Y, et al.Electrochemistry Communications, 2014, 46, 67.
148 Zhang C, Li H, Ping N, et al.RSC Advances, 2014, 4(73), 38791.
149 Li Y, Bai W Q, Wang D H, et al. Electrochimica Acta, 2015, 161, 252.
150 Zeng X Y, Tang Y K, Liu L, et al. Energy Technology, 2020, 8(3), 1901347.
151 Wang J, Li X, Wang Z, et al.Journal of Power Sources, 2014, 251, 325.
152 Park J S, Mahadi N B, Yashiro H, et al.ACS Applied Materials & Interfaces, 2016, 8(39), 25856.
153 Nagamine K, Honma T, Komatsu T.Journal of Power Sources, 2011, 196(22), 9618.
154 Kitajou A, Yoshida J, Nakanishi S, et al.Journal of Power Sources, 2013, 244, 658.
155 Zhao K N, Liu F N, Niu C J, et al.Advanced Science, 2015, 2(12), 7.
156 Yu L Q, Zhao S X, Wu X, et al.Journal of Alloys and Compounds, 2019, 810, 151938.
157 Mai L Q, Xu L, Han C H, et al. Nano letters, 2010, 10(11), 4750.
158 Wang S, Lu Z, Wang D, et al. Journal of Materials Chemistry, 2011, 21(17), 6365.
[1] 郝娴, 梁峰, 李红霞, 曹云波, 王晓函, 张海军. 纳米碳化钛的制备及在储能领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 1-8.
[2] 胡国彬, 刘慧根, 覃爱苗. 纳米二氧化硅负极材料储锂性能的研究进展[J]. 材料导报, 2021, 35(Z1): 9-14.
[3] 仲光洪, 汪丽莉, 杨稳. 电池负极材料Ti3C2M2 MXene表面修饰及Li存储能力的第一性原理计算研究[J]. 材料导报, 2021, 35(Z1): 15-20.
[4] 杨婷, 胡新宇, 王文磊. 硬脂酸锌热解ZnO@C复合材料的储锂性能[J]. 材料导报, 2021, 35(8): 8007-8010.
[5] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[6] 安海霞, 王景平, 杨立, 杨百勤, 李喜飞. 聚吡咯涂层改性的高温自阻断锂离子电池及其性能[J]. 材料导报, 2021, 35(4): 4007-4011.
[7] 玉日泉. 金属热还原法制备锂离子电池纳米硅材料的研究进展[J]. 材料导报, 2021, 35(3): 3041-3049.
[8] 王艳坤. 四氧化三铁/石墨烯纳米复合材料的静电自组装制备及储锂性能[J]. 材料导报, 2021, 35(16): 16008-16014.
[9] 孙丹, 李伟, 刘峥. 二维纳米材料MXene及其在锂离子电池中的应用研究进展[J]. 材料导报, 2021, 35(15): 15047-15055.
[10] 夏广辉, 王丁, 李雪豹, 董鹏, 张英杰, 王皓逸. 钠离子电池金属硫化物负极材料的研究进展[J]. 材料导报, 2021, 35(13): 13041-13051.
[11] 周建峰, 翟鑫华, 张盼盼, 何亚鹏, 董劲, 黄惠, 郭忠诚. 富锂锰基正极材料结构优化及晶面调控研究进展[J]. 材料导报, 2021, 35(11): 11057-11065.
[12] 田庆华, 邹艾玲, 童汇, 喻万景, 张佳峰, 郭学益. 废旧三元锂离子电池正极材料回收技术研究进展[J]. 材料导报, 2021, 35(1): 1011-1022.
[13] 王鸣, 黄俊涛, 程丽丽, 周律法, 任亚航, 王学雷. 锂离子电池负极用Li4Ti5O12@C复合材料的制备及电化学性能[J]. 材料导报, 2020, 34(Z2): 19-23.
[14] 张曦元, 康建立. 柔性自支撑纳米结构电极的研究进展[J]. 材料导报, 2020, 34(Z2): 30-36.
[15] 潘福森, 沈龙, 童磊, 聂顺军, 李虹. 喷雾造粒制备纳米硅-硬碳复合材料及其性能[J]. 材料导报, 2020, 34(Z1): 132-136.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed