Please wait a minute...
材料导报  2021, Vol. 35 Issue (16): 16008-16014    https://doi.org/10.11896/cldb.20090163
  无机非金属及其复合材料 |
四氧化三铁/石墨烯纳米复合材料的静电自组装制备及储锂性能
王艳坤
河南财政金融学院环境经济学院,郑州 450046
Colloid Electrostatic Self-assembly Synthesis of Ferroferric Oxide/Reduced Graphene Oxide Nanocomposites for Lithium Storage
WANG Yankun
College of Economic Environment, Henan Finance University, Zhengzhou 450046, China
下载:  全 文 ( PDF ) ( 6034KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用一种简单便捷的溶胶静电自组装技术,经高温煅烧还原制得四氧化三铁/还原氧化石墨烯纳米复合材料(FGCM)。经X射线衍射技术(XRD)、透射电子显微镜(TEM)、热重分析技术(TGA)、傅里叶变换红外光谱(FT-IR)、拉曼(Raman)光谱、X射线光电子谱(XPS)及N2吸附-脱附实验等方法对复合材料的结构、组成及形貌进行了表征。结果显示,粒径约7 nm的球状Fe3O4颗粒均匀紧密地分散在还原氧化石墨烯(rGO)褶皱状表面,从而有效地避免了Fe3O4颗粒的团聚。将制备的FGCM作为锂离子电池负极材料研究其锂电性能,由于Fe3O4和rGO两组分之间的协同效应,在100 mA·g-1的充放电流密度下,其首次放电比容量高达1 405 mAh·g-1,经100次充放电循环后其放电比容量仍高达663 mAh·g-1。此外,复合材料亦呈现持久的循环稳定性与优异的倍率性能。研究表明,FGCM是一种集石墨烯和四氧化三铁的优点于一体的优良的锂离子电池负极材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王艳坤
关键词:  石墨烯  四氧化三铁  静电自组装  复合材料  锂离子电池    
Abstract: Asimple and fast colloid electrostatic self-assembly method which followed a heat treatment process was adopted to prepare the ferroferric oxide/reduced graphene oxide composite nanomaterials (FGCM). The crystal structure, chemical composition and morphology of as-synthesized nanocomposites were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), Raman microscopy, X-ray photoelectron spectroscopy (XPS) and N2 adsorption-desorption experiments. The analyses showed that spherical Fe3O4 particles about 7 nm were loaded uniformly and tightly onto reduced graphene oxide (rGO) sheets surface, and, as a result, the aggregating of the Fe3O4 nanoparticles was effectively prevented. The electrochemical properties of FGCM were investigated for a potential anode material in lithium-ion batteries (LIBs). FGCM showed a high specific capacity of 1 405 mAh·g-1 in the initial discharge at current density of 100 mA·g-1, the specific capacitance still retained as high as 663 mAh·g-1 even after 100 cycles because of synergistic effect between the pure Fe3O4 and rGO components. In addition, the composites also presented significantly durable cycling stability and superior rate capability. These results indicate that the FGCM is a promising electrode material which combines the advantages of graphene and ferroferric oxide for high performance LIBs.
Key words:  grapheme    ferroferric oxide    electrostatic self-assembly    composite    lithium-ion battery
发布日期:  2021-09-07
ZTFLH:  O648.1  
基金资助: 国家自然科学基金(21373189);河南省科技计划项目(212102311111)
通讯作者:  yankunwang@126.com   
作者简介:  王艳坤,2016年毕业于郑州大学,获得理学博士学位,现为河南财政金融学院环境经济学院副教授,主要从事锂离子电池负极材料的制备与表征工作。
引用本文:    
王艳坤. 四氧化三铁/石墨烯纳米复合材料的静电自组装制备及储锂性能[J]. 材料导报, 2021, 35(16): 16008-16014.
WANG Yankun. Colloid Electrostatic Self-assembly Synthesis of Ferroferric Oxide/Reduced Graphene Oxide Nanocomposites for Lithium Storage. Materials Reports, 2021, 35(16): 16008-16014.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090163  或          http://www.mater-rep.com/CN/Y2021/V35/I16/16008
1 Sayahi H, Mohsenzadeh F, Darabi H R, et al.Journal of Alloys and Compounds, 2019, 778, 633.
2 Yu H, Guo G, Ji L, et al.Nano Research, 2016, 9(12), 3757.
3 Wu Y, Jiang G, Cano Z P, et al.Chemistryselect, 2018, 3(41), 11643.
4 Wu P, Wang H, Tang Y, et al.ACS Applied Materials & Interfaces, 2014, 6(5), 3546.
5 Wang Q, Ye K, Xu L, et al.Chemical Communications, 2019, 55(98), 14801.
6 Han C, Xu L, Li H, et al.Carbon, 2018, 140, 296.
7 Lin J Y, Chou M H, Kuo Y C. Journal of Alloys and Compounds, 2014, 589, 472.
8 Mehboob S, Ali G, Abbas S, et al. Journal of Industrial and Engineering Chemistry, 2019, 80, 450.
9 Bahadur A, Iqbal S, Shoaib M, et al.Dalton Transactions, 2018, 47(42), 15031.
10 Wang Y, Li D, Liu Y, et al.Electrochimica Acta, 2016, 203, 84.
11 Wang Y, Ding J, Liu Y, et al.Ceramics International, 2015, 41(10), 15145.
12 Wang Y, Li D, Liu Y, et al. Materials Letters, 2016, 167, 222.
13 Chen J S, Lou X W. Small, 2013, 9(11), 1877.
14 Xin S, Guo Y G, Wan L J. Accounts of Chemical Research, 2012, 45(10), 1759.
15 Bai S, Shen X. RSC Advances, 2012, 2(1), 64.
16 Liu J, Liu B, Li Z. Acta Physico-Chimica Sinica, 2014, 30(9),1650.
17 Wang H W, Xu Z J, Yi H, et al. Nano Energy, 2014, 7, 86.
18 Wang X, Zhou X, Yao K, et al. Carbon, 2011, 49(1), 133.
19 Zhu S P, Wu T, Su H M, et al. Acta Physico-Chimica Sinica, 2016, 32(11), 2737.
20 Yang X, Zhang X, Ma Y, et al. Journal of Materials Chemistry, 2009, 19(18), 2710.
21 Novoselov K S, Geim A K, Morozov S V, et al. Nature, 2005, 438(7065), 197.
22 Wu Q, Jiang R, Liu H. Ceramics International, 2020, 46(8), 12732.
23 Zdorovets M V, Kozlovskiy A L, Fadeev M S, et al. Ceramics International, 2020, 46(9), 13580.
24 Su J, Cao M, Ren L, et al. Journal of Physical Chemistry C, 2011, 115(30), 14469.
25 Asuha S, Wan H L, Zhao S, et al. Ceramics International, 2012, 38(8), 6579.
26 Li B, Cao H, Shao J, et al. Journal of Materials Chemistry, 2011, 21(13), 5069.
27 Shi Y H, Wang K, Li H H, et al. Applied Surface Science, 2020, 511, 145456.
28 Li L, Wang H, Xie Z, et al. Journal of Alloys and Compounds, 2020, 815, 152337.
29 He C, Wu S, Zhao N, et al. ACS Nano, 2013, 7(5), 4459.
30 Yang Z, Shen J, Archer L A. Journal of Materials Chemistry, 2011, 21(30), 11092.
31 Zhou G, Wang D W, Hou P X, et al. Journal of Materials Chemistry, 2012, 22(34), 17942.
32 Gu S, Zhu A. Journal of Alloys and Compounds, 2020, 813, 152160.
33 Wang Y, Liu Y, Zhang J.Journal of Nanoparticle Research, 2015, 17(10), 420.
[1] 廖家蔚, 刘红宇, 谢凯欣, 沈慧玲, 刘佳乐, 郑兴农. 四氧化三铁磁性药物载体的研究进展[J]. 材料导报, 2022, 36(Z1): 22040052-7.
[2] 杨惠舒, 李乐, 刘馨谣, 汤凯璇, 乔利. 介孔二氧化硅纳米颗粒作为药物载体的研究现状[J]. 材料导报, 2022, 36(Z1): 21110245-6.
[3] 梁泽芬, 林小军, 纳仁花, 牛玉艳, 王亮. 单层石墨烯电子结构的调控策略和对接的研究进展[J]. 材料导报, 2022, 36(Z1): 22020133-6.
[4] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[5] 吴青山, 赵鹏程, 刘志启, 周自圆, 李娜, 莫云泽. 镁铝水滑石的制备与应用研究[J]. 材料导报, 2022, 36(Z1): 22030128-8.
[6] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[7] 张娜, 周健. 高温处理后玄武岩纤维水泥基复合材料应变率效应研究[J]. 材料导报, 2022, 36(Z1): 20040024-5.
[8] 谢焕玲, 赵秋月, 张廷安, 李杨. 三元镍钴锰前驱体制备方法的研究现状[J]. 材料导报, 2022, 36(Z1): 21060186-9.
[9] 殷卫峰, 曾耀德, 杨中强, 张记明, 刘锐, 霍翠, 颜善银. 液晶高分子聚合物的类型、加工、应用综述[J]. 材料导报, 2022, 36(Z1): 21100214-5.
[10] 李辉, 朱刚, 张建卫, 康昆勇, 杜官本, 李园园, 孙呵. 二维MXene负载纳米金属及其氧化物构筑新型复合材料的研究进展[J]. 材料导报, 2022, 36(9): 20090029-9.
[11] 刘伟, 贾琨, 谷建宇, 马晨, 魏学红. Ag/石墨烯复合薄膜的制备及其导热和电磁屏蔽性能研究[J]. 材料导报, 2022, 36(9): 21020136-5.
[12] 焦宇鸿, 朱建锋, 王芬. SiC/Al基复合材料界面调控[J]. 材料导报, 2022, 36(9): 20070174-13.
[13] 姬旭敏, 孙滨洲, 李聪, 胡澎浩. 利用多层薄膜技术提升聚合物基复合材料介电储能密度的研究进展[J]. 材料导报, 2022, 36(9): 20080247-7.
[14] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[15] 胡思思, 刘倩, 李文, 王波. 三维大骨架结构FeSe2材料的制备及储锂机理研究[J]. 材料导报, 2022, 36(8): 21010183-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed