Please wait a minute...
材料导报  2021, Vol. 35 Issue (16): 16015-16020    https://doi.org/10.11896/cldb.20060266
  无机非金属及其复合材料 |
基于SWT模型和威布尔分布的CFRP环带微动疲劳寿命预测
高婧, 罗城
厦门大学建筑与土木工程学院,厦门 361005
Fretting Fatigue Life Prediction of Pin-loaded CFRP Strap Based on SWT Model and Weibull Distribution
GAO Jing, LUO Cheng
School of Architecture and Civil Engineering, Xiamen University, Xiamen 361005, China
下载:  全 文 ( PDF ) ( 3376KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以铰销式碳纤维增强基复合材料(CFRP)环带为研究对象,基于SWT疲劳寿命预测模型,推导了服从威布尔分布的概率疲劳寿命预测方法。在给定的荷载条件下,建立ANSYS有限元模型,获得最不利破坏点处的应力、应变数值,并将其代入SWT模型计算微动疲劳损伤参量。根据微动疲劳寿命实验结果,采用最大似然估计法,建立在双参数威布尔分布下微动疲劳寿命与损伤参量的函数关系,得出在一定可靠度下的微动疲劳寿命预测值。结果表明:有限元的数值模拟结果与实验结果具有一致性,在四个荷载工况下,SWT模型损伤参量和威布尔分布参数值的三次项插值函数均方误差最小,得出95%可靠度下的疲劳寿命循环次数预测值均小于疲劳实验最小测量值,可作为工程设计值使用,同时说明了此疲劳寿命预测模型的正确性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高婧
罗城
关键词:  SWT模型  威布尔分布  CFRP环带  微动疲劳  寿命预测    
Abstract: Based on the SWT fatigue life prediction model, the probabilistic fatigue life prediction method of pin-loaded CFRP strap obeying Weibull distribution is derived. The ANSYS finite element model is established to obtain the stress and strain at the most unfavorable failure location at given load conditions, and the SWT model is used to calculate the fretting fatigue damage parameters. According to the experimental results of fretting fatigue life, the maximum likelihood estimation method is used to establish the functional relationship between fretting fatigue life and da-mage parameters under two parameter Weibull distribution, and the prediction value of fretting fatigue life under certain reliability is obtained. It is shown that FEA results are consistent with that in the test. Under four load cases, the mean square error of the cubic interpolation function of the damage parameters and Weibull distribution parameters of the SWT model is the minimum. The fatigue life prediction model is validated by the comparision between the calculation results and the test, in which the predicted fatigue life under 95% reliability is less than the minimum mea-sured value in the test. It is obvious that the predicted model can be used in the design.
Key words:  SWT model    Weibull distribution    CFRP strap    fretting fatigue    life prediction
发布日期:  2021-09-07
ZTFLH:  TU599  
基金资助: 国家自然科学基金面上项目(51778372);中国中铁股份有限公司科技研究开发计划(2020-重点-11)
通讯作者:  gaojing@xmu.edu.cn   
作者简介:  高婧,厦门大学土木工程系副教授,硕士研究生导师。2002年获得长沙理工大学学士学位,2009年于福州大学结构工程专业取得博士学位,2009年到厦门大学任职。其中2013—2014年在瑞士联邦材料科技研究院访学。主要研究方向为拱桥计算理论、结构健康监测与CFRP在结构工程中的应用。
引用本文:    
高婧, 罗城. 基于SWT模型和威布尔分布的CFRP环带微动疲劳寿命预测[J]. 材料导报, 2021, 35(16): 16015-16020.
GAO Jing, LUO Cheng. Fretting Fatigue Life Prediction of Pin-loaded CFRP Strap Based on SWT Model and Weibull Distribution. Materials Reports, 2021, 35(16): 16015-16020.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060266  或          http://www.mater-rep.com/CN/Y2021/V35/I16/16015
1 He M J.Fretting fatigue of mechanical components, National Defense Industry Press,China,1994(in Chinese).
何明鉴. 机械构件的微动疲劳,国防工业出版社,1994.
2 Zhou Z R, Vincen T L.Fretting wear, Science Press, China, 2002(in Chinese).
周仲荣, Vincen T L. 微动磨损,科学出版社,2002.
3 Nowell D, Dini D, Hills D A.Engineering Fracture Mechanics, 2006, 73(2), 207.
4 Shen M X, Peng J F, Zheng J F.Materials Engineering, 2010 (12), 86(in Chinese).
沈明学, 彭金方, 郑健峰. 材料工程, 2010(12),86.
5 Shang D G, Wang D J.Multiaxial fatigue, Science Press, 2007(in Chinese).
尚德广,王德俊.多轴疲劳强度,科学出版社,2007.
6 Chu C C , Conle F A , Bonnen J J F. In: Advancesin Multiaxial Fatigue. ASTM STP 1191. Philadelphia, 1993,pp.37.
7 Fatemi A, Socie D F.Fatigue & Fracture of Engineering Materials & Structures, 1988,11(3),149.
8 Lykins C D, Mall S, Jain V.Fatigue & Fracture of Engineering Materials & Structures, 2010, 24(7),461.
9 Smith K N, Waston P, Topper T H.Journal of Mechanics,1970,15(4), 767.
10 Zhou W, Sun W M.Lubrication Engineering, 2010, 35(6), 108(in Chinese).
周文, 孙伟明. 润滑与密封, 2010, 35(6),108.
11 Ruiz C, Boddington P H B, Chen K C.Experimental Mechanics, 1984, 24(3), 208.
12 Ling D, He L P, Xu H W.Journal of Mechanical Design, 2011(7), 50(in Chinese).
凌丹,何俐萍, 许焕卫. 机械设计, 2011(7),50.
13 Weibull W.International Journal of Applied Mechanics, 1951, 18(2), 293.
14 Wan W J, Han B, Han W.Journal of Aeronautical Materials, 2016, 36(4), 71(in Chinese).
万文娟,韩波,韩伟. 航空材料学报,2016, 36(4),71
15 Schulte K, Friedrich K, Kutter S.Composites Science & Technology, 1987, 30(3), 203.
16 Shi W, Wen W D, Cui H T.Journal of Aviation Power, 2014, 29(1),104(in Chinese).
石炜, 温卫东, 崔海涛. 航空动力学报, 2014, 29(1),104.
17 Xu Y L, Cui H T, Chen W.Journal of Aviation Power, 2013, 28(3),489(in Chinese).
徐友良, 崔海涛, 陈伟. 航空动力学报, 2013, 28(3),489
18 Szolwinski M H, Farris G T. In: Dallas.Proceedings of the ASME Symposium on High Cycle Fatigue. US, 1997, pp. 449.
19 Li X L, Zhang Y E, Zhang Y P.Bearing, 2003 (4), 26(in Chinese).
李兴林, 张永恩, 张仰平. 轴承, 2003(4),26.
20 Cheng Y B, Meng F Z, Feng Z M.Lubrication Engineering, 2009, 34(6), 13(in Chinese).
程亚兵, 孟繁忠, 冯增铭. 润滑与密封, 2009, 34(6),13.
21 Li T Y, Wu Z F, Wang T.Machinery Design and Manufacture, 2017(9), 27(in Chinese).
李添翼, 武志斐, 王铁. 机械设计与制造, 2017(9),27.
22 Khalili A, Kromp K.Journal of Materials Science, 1991, 26(24), 6741.
23 Fabio B, Vanessa R, Giovanni T.Polymers, 2016, 8(4), 124.
24 Fabio B, Rea H, Zafiris T, et al.Polymers, 2018, 10(2), 169.
[1] 吴涛, 姚卫星, 黄杰. 纤维增强树脂基复合材料超高周疲劳研究进展[J]. 材料导报, 2022, 36(6): 20050117-9.
[2] 冯震, 邢保英, 何晓聪, 曾凯, 余康. 盐性环境下铝合金自冲铆接头的疲劳特性及寿命预测[J]. 材料导报, 2022, 36(1): 20100065-5.
[3] 韩翠红, 石佳东, 刘云帆, 刘倩, 马国政, 李国禄, 王海斗. 关节轴承自润滑材料摩擦学性能及轴承寿命预测研究现状[J]. 材料导报, 2021, 35(5): 5166-5173.
[4] 沙建芳, 夏中升, 刘建忠, 郭飞, 徐海源. 超高强水泥基灌浆材料疲劳性能研究综述[J]. 材料导报, 2021, 35(11): 11013-11026.
[5] 徐国财, 黎军顽, 左鹏鹏, 吴晓春. 热-机械载荷下H13钢力学响应行为实验和数值分析[J]. 材料导报, 2020, 34(8): 8159-8164.
[6] 董瑞鑫, 申向东, 薛慧君, 刘倩, 维利思. 干湿循环与风沙吹蚀作用下风积沙混凝土的抗硫酸盐耐久性[J]. 材料导报, 2020, 34(20): 20053-20060.
[7] 孔焕平, 姜涛, 刘昌奎, 应少军, 赵凯. 多轴复杂应力形式下TB6高强钛合金耳片的微动疲劳断裂研究[J]. 材料导报, 2020, 34(14): 14134-14139.
[8] 乔宏霞, 郭向柯, 朱彬荣. 三参数Weibull分布的多因素作用下混凝土加速寿命试验[J]. 材料导报, 2019, 33(4): 639-643.
[9] 张明义, 袁帅, 钟敏, 柏劲松. 金属材料和结构的疲劳寿命预测概率模型及应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 808-814.
[10] 董方园,郑山锁,宋明辰,张艺欣,郑捷,秦卿. 高性能混凝土研究进展Ⅱ:耐久性能及寿命预测模型[J]. 《材料导报》期刊社, 2018, 32(3): 496-502.
[11] 赵伦, 何晓聪, 邢保英, 张先炼, 邰加琪. 铝合金自冲铆接微动行为研究*[J]. 《材料导报》期刊社, 2017, 31(14): 105-108.
[12] 朱麟,刘新宝,辛甜,潘成飞,刘剑秋. 基于微观组织演化的P91钢长时蠕变寿命预测*[J]. 材料导报编辑部, 2017, 31(10): 137-140.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed