Please wait a minute...
材料导报  2020, Vol. 34 Issue (14): 14134-14139    https://doi.org/10.11896/cldb.19060094
  金属与金属基复合材料 |
多轴复杂应力形式下TB6高强钛合金耳片的微动疲劳断裂研究
孔焕平1, 2, 3, 4, 姜涛1, 2, 3, 4, 刘昌奎1, 2, 3, 4, 应少军5, 赵凯1, 2, 3, 4
1 中国航发北京航空材料研究院, 北京 100095
2 航空材料检测与评价北京市重点实验室, 北京 100095
3 中国航空发动机集团材料检测与评价重点实验室, 北京 100095
4 材料检测与评价航空科技重点实验室, 北京 100095
5 中国航空工业昌河飞机(集团)有限公司, 景德镇 333000
Study on Fretting Fatigue Fracture of TB6 High Strength Titanium Alloy Lugs Under Multiaxial Complex Stress
KONG Huanping1, 2, 3, 4, JIANG Tao1, 2, 3, 4, LIU Changkui1, 2, 3, 4, YING Shaojun5, ZHAO Kai1, 2, 3, 4
1 AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
2 Beijing Key Laboratory of Aeronautical Materials Testing and Evaluation, Beijing 100095, China
3 Key Laboratory of Science and Technology on Aeronautical Materials Testing and Evaluation of Aero Engine Corporation of China, Beijing 100095, China
4 Aviation Key Laboratory of Science and Technology on Materials Testing and Evaluation, Beijing 100095, China
5 AVIC Changhe Aircraft Industry (Group) Corporation Ltd., Jingdezhen 333000, China
下载:  全 文 ( PDF ) ( 6076KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本实验研究了TB6高强钛合金在拉-扭多轴应力条件下的微动疲劳断裂机理,并结合宏微观观察、残余应力测试、计算机模拟分析了不同工艺条件的耳片在拉-扭疲劳试验应力下的微动疲劳寿命差异,研究了微动疲劳裂纹的萌生及扩展特性,揭示了耳片裂纹萌生机制。结果表明:二次挤压耳片的断口扩展区面积比例较大,说明其拉-扭疲劳扩展更为充分。经二次挤压后,耳片的拉-扭微动疲劳总寿命得到延长,且裂纹萌生寿命均占总寿命的95%以上;二次挤压后耳片的裂纹萌生驱动力较低,呈现较高的裂纹萌生抗力。各断口均起源于耳片内孔微动磨损印迹较重处,大面积连续片状的微动磨损印迹表明二次挤压后的钛合金微动疲劳敏感性大大降低。经挤压强化后,孔壁形成了较高幅值的残余压应力层和组织强化层,可以有效地抑制裂纹的萌生和扩展。耳片内孔微动磨损层的形成是机械诱导机制和热诱导机制共同作用的结果,其最终磨损形式为疲劳磨损。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孔焕平
姜涛
刘昌奎
应少军
赵凯
关键词:  多轴复杂应力  微动疲劳  裂纹萌生抗力  微动磨损  疲劳磨损    
Abstract: The fretting fatigue fracture mechanism of TB6 high strength titanium alloy under tension-torsion multiaxial stress was studied. Based on macro and micro observation, residual stress testing and computer simulation, the difference of the fretting fatigue life of the lugs with different treated conditions under tension-torsion fatigue test stress was analyzed. The characteristics of fretting fatigue crack initiation and propagation under tension-torsion fatigue test were studied, and the mechanism of fretting crack initiation was revealed. The results show that fractures propagation area of twice extrusion lugs is larger. After twice extrusion, the total life of fretting fatigue of lugs is greatly extended, and the crack initiation life accounts for more than 95% of the total life. The driving force of the crack initiation is lower and the resistance against crack initiation is better. Each fracture originates from the marks on the inner hole of lugs have heavier fretting wear. After extrusion strengthening, a higher residual compressive stress layer and a tissue strengthening layer are formed on the hole wall, which can effectively inhibit the initiation and propagation of the cracks. The formation of fretting wear layer in the inner hole of lugs is the result of the combined action of mechanical mechanism and thermal induction mechanism, and the final wear form of lugs is fatigue wear.
Key words:  multiaxial complex stress    fretting fatigue    resistance to crack initiation    fretting wear    fatigue wear
               出版日期:  2020-07-25      发布日期:  2020-07-14
ZTFLH:  TG115  
基金资助: 航空科学基金项目(2016ZF21005)
作者简介:  孔焕平,2012年1月毕业于北京航空航天大学,获得硕士学位。自2012年1月起在中国航发北京航空材料研究院工作,主要从事金属材料损伤与失效分析工作。
引用本文:    
孔焕平, 姜涛, 刘昌奎, 应少军, 赵凯. 多轴复杂应力形式下TB6高强钛合金耳片的微动疲劳断裂研究[J]. 材料导报, 2020, 34(14): 14134-14139.
KONG Huanping, JIANG Tao, LIU Changkui, YING Shaojun, ZHAO Kai. Study on Fretting Fatigue Fracture of TB6 High Strength Titanium Alloy Lugs Under Multiaxial Complex Stress. Materials Reports, 2020, 34(14): 14134-14139.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060094  或          http://www.mater-rep.com/CN/Y2020/V34/I14/14134
1 Liu C K, Wei Z W, Zhao J, et al. Failure Analysis and Prevention, 2017,12(5),310(in Chinese).
刘昌奎, 魏振伟,赵剑, 等. 失效分析与预防, 2017,12(5),310.
2 Ouyang D L. Research on microstructure evolution and dynamic recrystallization behavior of titanium alloy TB6 and TA15 during β forging. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2011(in Chinese).
欧阳德来. TB6和TA15钛合金β锻组织演变及动态再结晶行为研究.硕士学位论文,南京航空航天大学,2011.
3 Zhang X, Wang Z. International Journal of Fatigue, 2003,25,1249.
4 Warner J J, Clark P N, Hoeppner D W. International Journal of Fatigue, 2014,68,209.
5 Luo X K, Ai Y J, Wang X, et al. Journal of Aeronautical Materials, 2017,37(6),88(in Chinese).
罗学坤,艾莹珺,王欣, 等. 航空材料学报, 2017,37(6),88.
6 Liu X L, Zhang W F, Tao C H. Materials for Mechanical Engineering, 2008,32(5),4(in Chinese).
刘新灵,张卫芳,陶春虎. 机械工程材料, 2008,32(5),4.
7 Zhang Y, Zhang W F, Yan H. Journal of Materials Engineering, 2000(4),45(in Chinese).
张燚,张文峰,闫海. 材料工程, 2000(4),45.
8 Waterhouse R B. Corrosion, 1972,12(3),79.
9 Collins J A, Tovey F M. Testing and Evaluation, 1972,420.
10 Nishioka K, Hirakawa K. Bulletin of the JSME, 1969,52,692.
11 Tian F, Yang H. Surface Technology, 2014, 43(1),55(in Chinese).
田峰,杨辉. 表面技术, 2014, 43(1),55.
[1] 赵伦, 何晓聪, 张先炼, 张龙, 高爱凤. 轻合金自冲铆微动磨损及疲劳性能研究[J]. 《材料导报》期刊社, 2017, 31(6): 72-75.
[2] 张越, 何晓聪, 张龙, 张先炼. 钛合金压印接头疲劳性能与微观分析[J]. 《材料导报》期刊社, 2017, 31(6): 81-85.
[3] 赵伦, 何晓聪, 张先炼, 张龙, 程强. TA1钛合金单搭自冲铆接头微动磨损机理*[J]. 《材料导报》期刊社, 2017, 31(2): 73-76.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed