Please wait a minute...
材料导报  2020, Vol. 34 Issue (14): 14129-14133    https://doi.org/10.11896/cldb.19080055
  金属与金属基复合材料 |
深冷变形对2219铝合金环件晶粒组织及性能的影响
黄建武1, 2, 易幼平1, 2, 3, 黄始全1, 2, 郭万富2, 3
1 中南大学机电工程学院, 长沙 410083
2 中南大学高性能复杂制造国家重点实验室, 长沙 410083
3 中南大学轻合金研究院, 长沙 410083
Effects of Cryogenic Deformation on Grain Structure and Properties of 2219 Aluminum Alloy Rings
HUANG Jianwu1, 2, YI Youping1, 2, 3, HUANG Shiquan1, 2, GUO Wanfu2, 3
1 School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
2 State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China
3 Light Alloy Research Institute, Central South University, Changsha 410083, China
下载:  全 文 ( PDF ) ( 5719KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对2219铝合金环件在传统高温变形工艺过程中存在的晶粒组织粗大问题,本研究提出一种环件深冷变形新工艺。借助金相显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)、拉伸测试等分析手段研究了深冷变形及传统高温变形工艺对2219铝合金环件晶粒组织与力学性能的影响。结果表明:深冷变形以高密度位错形式累积大量存储能,有助于在后续固溶及轧制过程中通过再结晶细化晶粒。晶粒的细化使得应力在合金内部的分布更均匀,裂纹扩展路径也更加曲折, 沿晶断裂成为其主要断裂机制。相比480 ℃高温变形工艺,样品在液氮条件下进行深冷变形并结合热处理,可明显提升其综合力学性能,其抗拉强度、屈服强度、延伸率平均提高了20 MPa、22 MPa、3.0%,同时各向异性也明显降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄建武
易幼平
黄始全
郭万富
关键词:  2219铝合金环件  深冷变形  位错  晶粒  力学性能    
Abstract: Aiming at the problem of coarse grains in the traditional high temperature deformation process of 2219 aluminum alloy rings, this paper proposes a new process of ring cryogenic deformation. The microstructure and mechanical properties of 2219 aluminum alloy rings were studied by means of metallographic microscope (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and tensile testing. The results show that the cryogenic deformation accumulates a large amount of storage energy in the form of high-density dislocations, which helps to recrystallize and refine grains during subsequent solution treatment and rolling process. The grain refinement makes the distribution of stress inside the alloy more uniform, and the crack propagation path is also more tortuous. The fracture mechanism is mainly along the crystal fracture. Compared with the deformation at high temperature (480 ℃), the sample undergoes cryogenic deformation under liquid nitrogen conditions and combined with heat treatment could significantly improve its comprehensive mechanical properties. Its tensile strength, yield strength and elongation are increased by an average of 20 MPa, 22 MPa and 3.0%, respectively, and its anisotropy is also significantly reduced.
Key words:  2219 aluminum alloy rings    cryogenic deformation    dislocation    grain    mechanical properties
               出版日期:  2020-07-25      发布日期:  2020-07-14
ZTFLH:  TG146.2  
基金资助: 国家自然科学基金(51875583);国家自然科学联合基金(U1637601);高性能复杂制造国家重点实验室基金(ZZYJKT2018-03)
作者简介:  黄建武,生于1995年,中南大学机电工程学院机械工程专业,硕士研究生。主要从事航空航天轻合金构件成型工艺研究。
易幼平,中南大学机电工程学院教授,博士研究生导师。主要从事航空、航天轻合金构件成形工艺与模具、热处理工艺和装备等方向的研究。
引用本文:    
黄建武, 易幼平, 黄始全, 郭万富. 深冷变形对2219铝合金环件晶粒组织及性能的影响[J]. 材料导报, 2020, 34(14): 14129-14133.
HUANG Jianwu, YI Youping, HUANG Shiquan, GUO Wanfu. Effects of Cryogenic Deformation on Grain Structure and Properties of 2219 Aluminum Alloy Rings. Materials Reports, 2020, 34(14): 14129-14133.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080055  或          http://www.mater-rep.com/CN/Y2020/V34/I14/14129
1 Surekha K, Murty B S, Prasad Rao K. Materials and Design, 2011, 32(8-9), 4502.
2 Lu Y, Wang J, Li X, et al. Materials Science and Engineering: A, 2018, 723, 204.
3 Hei H L, Yi Y P, Huang S Q, et al. Journal of Materials Science and Technology, 2019, 35(1), 55.
4 Guo W F, Yi Y P, Huang S Q, et al. Metals and Materials Internatio-nal, 2020, 26, 56.
5 Su N, Sheng L. Science and Technology Achievements, 2012(4),56(in Chinese).
苏宁, 盛亮. 科技成果纵横, 2012(4),56.
6 Xu K H, Zhang W X, Yang D J, et al. Forging & Stamping Technology, 2016, 41(10), 92(in Chinese).
徐坤和, 张文学, 阳代军, 等. 锻压技术, 2016, 41(10), 92.
7 Pérez P, Eddahbi M, González S, et al. Scripta Materialia, 2011, 64(1), 33.
8 Wang J N, Xie K. Scripta Materialia, 2000, 43(5),441.
9 Joshi A, Kumar N, Yogesha K K, et al. Journal of Materials Engineering and Performance, 2016, 25, 3031.
10 Hussain M, Rao P N, Jayaganthan R, et al. Metallography Microstructure and Analysis, 2015, 4(3), 219.
11 Nageswara rao P, Jayaganthan R. Materials & Design, 2012, 39, 226.
12 Hou L G, Li M L, Wang X D, et al. Acta Metallurgica Sinica, 2017(9),53(in Chinese).
侯陇刚, 刘明荔, 王新东, 等. 金属学报, 2017(9),53.
13 Mei L. Study of cryogenic thermo-mechanical treatment behavior of 6016 aluminium alloy. Master's Thesis, Chongqing University, China, 2015(in Chinese).
梅霖. 6016铝合金低温形变热处理行为的研究. 硕士学位论文, 重庆大学, 2015.
14 Tang D L, Liu X H, Song M. Journal of Materials Heat Treatment, 2015, 36(2), 32(in Chinese).
汤德林, 刘相华, 宋孟. 材料热处理学报, 2015, 36(2),32.
15 Lee W, Lin C. Cryogenics, 2016, 79, 26.
16 Chen X H, Chen K H, Dong P X, et al. Chinese Journal of Nonferrous Metals, 2013(1), 44(in Chinese).
陈学海, 陈康华, 董朋轩,等. 中国有色金属学报, 2013(1),44.
17 Shaterani, Zarei-Hanzaki, Fatemi-Varzaneh, et al. Materials and Design, 2014, 58(6),535.
18 Cheng W J, Wei L, Yuan S J. Materials Science and Engineering, 2019, 759, 357.
19 Shi J J, Cui K X, Wang B S, et al. Materials Characterization, 2017,129, 104.
20 Yan L M, Shen J, An Diet al. Rare Metal Materials and Engineering, 2017, 46(11), 3233.
21 Ritsuko Yoshimura, Toyohiko J Konno, Eiji Abe,et al. Acta Materialia, 2003, 51(14), 4251.
22 Murayama M, Horita Z, Hono K. Acta Materialia, 2001, 49(1), 21.
23 Liu Z Y, Bai S B, Zhou X W, et al. Materials Science and Engineering: A, 2011,528, 2217.
24 Papazian J M. Metallurgical Transactions A, 1981, 12(2), 269.
25 Ludtka G M, Laughlin D E. Metallurgical Transactions A, 1982, 13(3), 411.
[1] 吕展衡, 陈品鸿, 许冰, 罗颖, 周武艺, 董先明. 巯基-双键点击反应制备光固化红光转光膜及其性能[J]. 材料导报, 2020, 34(Z1): 111-115.
[2] 王枭, 郭伟, 胡月阳, 陈芹, 仇佳琳, 李正阳, 陈佳彬, 管荣成. 硫硅酸钙的合成及水化性能的研究[J]. 材料导报, 2020, 34(Z1): 169-172.
[3] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[4] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[5] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[6] 宋文杰, 刘洁, 董会萍, 张光, 王彤. 超轻镁锂合金熔炼工艺研究[J]. 材料导报, 2020, 34(Z1): 316-321.
[7] 黄同瑊, 晁代义, 宋晓霖, 张伟, 王志雄, 张华, 吕正风. 热轧工艺对Al-Cu-Mg合金组织及性能的影响[J]. 材料导报, 2020, 34(Z1): 322-324.
[8] 姚三成, 丁毅, 赵海, 江波, 刘学华, 方政. 中碳微合金钢的断裂韧性与显微组织的关系[J]. 材料导报, 2020, 34(Z1): 452-456.
[9] 何承绪, 马光, 陈新, 杨富尧, 程灵, 杨勇杰, 胡卓超, 孟利. 低温薄规格取向硅钢初次再结晶组织对二次再结晶行为的影响[J]. 材料导报, 2020, 34(Z1): 457-461.
[10] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[11] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[12] 徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰. 无磁金属陶瓷的研究进展[J]. 材料导报, 2020, 34(9): 9064-9068.
[13] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[14] 闫敬明, 黎平, 左孝青, 周芸, 罗晓旭. Al-Ti-B晶粒细化剂研究进展:细化机理及第二相控制[J]. 材料导报, 2020, 34(9): 9152-9157.
[15] 张玉, 刘施峰, 李利娟, 祝佳林, 邓超. 晶粒取向及氧化电压对阳极氧化Ta2O5纳米管形貌的影响[J]. 材料导报, 2020, 34(8): 8010-8013.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed