Please wait a minute...
材料导报  2020, Vol. 34 Issue (9): 9152-9157    https://doi.org/10.11896/cldb.18120054
  金属与金属基复合材料 |
Al-Ti-B晶粒细化剂研究进展:细化机理及第二相控制
闫敬明, 黎平, 左孝青, 周芸, 罗晓旭
昆明理工大学材料科学与工程学院,昆明 650093
Research Progress of Al-Ti-B Grain Refiner: Mechanism Analysis and Second Phases Controlling
YAN Jingming, LI Ping, ZUO Xiaoqing, ZHOU Yun, LUO Xiaoxu
School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 4689KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着铝合金使用日益广泛,人们对高品质Al-Ti-B晶粒细化剂的需求也日益增加。氟盐法是国内外Al-Ti-B晶粒细化剂制备的主流方法,国内研究者们在氟盐法制备工艺方面取得了一定的成果,但依然未能在高品质Al-Ti-B晶粒细化剂的制备上获得突破。
Al-Ti-B晶粒细化剂的细化机理主要有硼化物粒子理论、包晶反应理论、双重形核理论等,其中,双重形核理论可以较好地解释Al-Ti-B晶粒细化剂的晶粒细化过程。双重形核理论表明:Al-Ti-B晶粒细化剂中的第二相TiAl3和TiB2尺寸越小、数量越多、分布越弥散,则Al-Ti-B晶粒细化剂的细化性能越突出。
氟盐反应热力学分析表明:在氟盐反应产物控制方面,TiB2的生成趋势最大,TiAl3次之,AlB2最小;在750~800 ℃的反应温度范围内,适当缩短反应时间,可在保证TiAl3生成的同时避免AlB2的生成。氟盐反应动力学分析表明:TiAl3和TiB2的形成由氟盐分解、第二相形核及长大三个过程组成,通过减小氟盐尺寸、提高氟盐分解气体TiF4和BF3与Al熔体的接触界面面积、减小Ti、B元素的绝对过饱和度、缩短反应时间等措施,有望获得内含细小弥散第二相的Al-Ti-B晶粒细化剂。
本文主要介绍了Al-Ti-B晶粒细化剂的发展历程及制备方法,阐述了国产Al-Ti-B晶粒细化剂与进口产品的差距和存在的问题。基于Al-Ti-B晶粒细化剂的晶粒细化机理、氟盐反应热力学与动力学,讨论了TiAl3、TiB2的细化、弥散化控制原理,并对其细化、弥散化控制技术及潜在技术进行了综述和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫敬明
黎平
左孝青
周芸
罗晓旭
关键词:  Al-Ti-B晶粒细化剂  细化机理  热力学和动力学  第二相控制    
Abstract: With the widespread usage of aluminum alloys, the demand for high-quality Al-Ti-B grain refiner is increasing. Fluoride salt method is the mainstream preparation method of Al-Ti-B grain refiners at home and abroad. Domestic researchers have made many efforts to improve the fluoride salt reaction preparation technology of Al-Ti-B grain refiner and obtained some research achievements. However, a breakthrough in preparing the high quality Al-Ti-B grain refiner has not been achieved.
The main refining theories of Al-Ti-B grain refiner are the boron particle theory, the peritectic reaction theory and the duplex nucleation theory and so on. Among them, the duplex nucleation theory can explain the grain refining process of Al-Ti-B grain refiner well. The duplex nucleation theory indicates that if the size of the second phase TiAl3 and TiB2 is smaller, the number of the second phase TiAl3 and TiB2 is higher, the second phase TiAl3 and TiB2 is more evenly distributed, the refining performance of Al-Ti-B grain refiner is better.
The thermodynamics analysis of fluoride salt reaction shows that the generation trend of TiB2 is the largest, followed by TiAl3 and AlB2 is the smallest. During 750—800 ℃, shortening the reaction time properly can guarantee the forming of the TiAl3 and avoid the forming of the AlB2 at the same time. The dynamics analysis of fluoride salt reaction shows that the forming of the TiAl3 and TiB2 composed of three steps, the decomposition of fluoride salt, the nucleation of the second phase, and the growth of the second phase. By decreasing the size of the fluoride salt, increa-sing the contact area between the decomposition gases (TiF4 and BF3) and the aluminum melt, decreasing the absolute saturation of titanium and boron, and shortening the reaction time can gain tiny and dispersive second phase.
This paper mainly introduces the development history and the mainstream preparation methods of Al-Ti-B grain refiner, describes the gap and the existing problems between domestic and imported Al-Ti-B grain refiners. Based on the grain refinement mechanism of Al-Ti-B grain refiner, the thermodynamics and kinetics of fluoride reaction process, the control principle of refinement and dispersion of TiAl3 and TiB2 is discussed, the relevant control technology and potential technology are reviewed and prospected respectively.
Key words:  Al-Ti-B grain refiner    refinement mechanism    thermodynamics and kinetics    second phase control
                    发布日期:  2020-04-27
ZTFLH:  TG146.2  
基金资助: 国家自然科学基金(51861020;51741103;51164019);云南省重点研发计划项目(2018BA072)
通讯作者:  zxqdzhhm@163.com   
作者简介:  闫敬明,2018年6月毕业于福州大学,获得工学学士学位。现为昆明理工大学硕士研究生,在左孝青教授的指导下进行研究。目前主要研究领域为Al-Ti-B晶粒细化剂。
左孝青,昆明理工大学,教授,博士,博士研究生导师,昆明理工大学泡沫金属材料创新团队首席教授。主要从事多孔金属材料、金属基复合材料及有色金属材料研究,发表论文112篇,SCI、EI收录40余篇,授权国家发明专利30余项。
引用本文:    
闫敬明, 黎平, 左孝青, 周芸, 罗晓旭. Al-Ti-B晶粒细化剂研究进展:细化机理及第二相控制[J]. 材料导报, 2020, 34(9): 9152-9157.
YAN Jingming, LI Ping, ZUO Xiaoqing, ZHOU Yun, LUO Xiaoxu. Research Progress of Al-Ti-B Grain Refiner: Mechanism Analysis and Second Phases Controlling. Materials Reports, 2020, 34(9): 9152-9157.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18120054  或          http://www.mater-rep.com/CN/Y2020/V34/I9/9152
1 Dahle A K, Tondel P A, Paradies C J, et al. Metallurgical & Materials Transactions A,1996,27(8),2305.
2 Quested T E, Greer A L. Acta Materialia,2004,52(13),3859.
3 Greer A L, Bunn A M, Tronche A, et al. Acta Materialia,2000,48(11),2823.
4 Easton M, Stjohn D. Metallurgical & Materials Transactions A,1999,30(6),1625.
5 Birol Y. International Journal of Cast Metals Research,2013,26(5),283.
6 http://www.cnmn.com.cn/ShowNews1.aspx?id=356912.
7 Wu J Z, Jiang J X, Jia J Y, et al. Rare Earth Information,2016(12),32(in Chinese).
吴俊子,姜佳鑫,贾锦玉,等.稀土信息,2016(12),32.
8 Li D C, Jiang X Q, He J, et al. Light Alloy Fabrication Technology,2006(5),14(in Chinese).
李纯迟,蒋显全,何健,等.轻合金加工技术,2006(5),14.
9 Fang X. Special Casting & Nonferrous Alloys,1996(2),18.
10 Chen Y J,Xu Q Y, Huang T Y. Materials Review,2006,20(12),57(in Chinese).
陈亚军,许庆彦,黄天佑.材料导报,2006,20(12),57.
11 Xu J J, Deng Y L, Kang W, et al. Light Metals,2016(11),58(in Chinese).
徐进军,邓运来,康唯,等.轻金属,2016(11),58.
12 Birol Y. Journal of Alloys & Compounds,2006,420(1),71.
13 Quested T E, Greer A L. Acta Materialia,2005,53(17),4643.
14 Murty B S, Kori S A, Venkateswarlu K, et al. Journal of Materials Processing Technology,1999,s89-90(8),152.
15 Birol Y. Journal of Alloys & Compounds,2007,440(1-2),108.
16 Zhang M J. Light Metals,1989(11),51(in Chinese).
张明俊.轻金属,1989(11),51.
17 Wang S J, Wang M X, Liu Z Y, et al. Light Alloy Fabrication Technology,2005,33(5),21(in Chinese).
王三军,王明星,刘志勇,等.轻合金加工技术,2005,33(5),21.
18 Maslov V M, Neganov A S, Borovinskaya I P, et al. Combustion Explosion & Shock Waves,1978,14(6),759.
19 Merzhanov A G. Journal of Materials Chemistry,2004,14(12),1779.
20 Chen Y J, Xu Q Y, Huang T Y. Journal of University of Science and Technology Beijing,2007,29(7),725(in Chinese).
陈亚军,许庆彦,黄天佑.北京科技大学学报,2007,29(7),725.
21 Zhou Y H, Huang Q M. Special-cast and Non-ferrous Alloys,2008,28(4),311(in Chinese).
周玉辉,黄清民.特种铸造及有色合金,2008,28(4),311.
22 Wei L J, Hu H, Hu Z L. Materials Review,2014(s1),128(in Chinese).
良杰,胡华,胡治流.材料导报,2014(s1),128.
23 Tang H Y, Chen Y, Yang G, et al. Materials Review,2012(s1),133(in Chinese).
汤皓元,陈越,杨钢,等.材料导报,2012(s1),133.
24 Li X M. World Nonferrous Metals,2012(8),56(in Chinese).
李晓敏.世界有色金属,2012(8),56.
25 Liu X F, Bian F X. Master alloy for aluminum alloy microstructure refining. Central South University Press, China,2012(in Chinese).
刘相法,边秀房.铝合金组织细化用中间合金.中南大学出版社,2012.
26 Murty B S, Kori S A, Chakraborty M. Metallurgical Reviews,2002,47(1),3.
27 Cibula A. The Japan Institute of Metal,1951,80(1),1.
28 Guzowski M M, Sigworth G K, Sentner D A. Metallurgical and Materials Transactions A (United States),1987,18A(4),603.
29 Crossley F A, Mondolfo L F. JOM,1951,3(12),1143.
30 Cornish A J. Metal Science,1975,9,477.
31 Jones G P, Pearson J. Metallurgical Transactions B,1976,7(2),223.
32 Mohanty P S, Gruzleski J E. Acta Metallurgica Et Materialia,1995,43(5),2001.
33 Mohanty P S, Samuel F H, Gruzleski J E. Metallurgical & Materials Transactions B,1995,26(1),103.
34 Jones G P, Pearson J. Metallurgical Transactions B,1976,7(2),223.
35 Ma H T, Li J G, Zahng B Q. et al. The Chinese Journal of Nonferrous Metals,2001,11(5),801(in Chinese).
马洪涛,李建国,张柏清,等.中国有色金属学报,2001,11(5),801.
36 Xiang Z L, Ma T F, Chen Z Y, et al. Materials Review A:Review Papers,2013,27(5),110(in Chinese).
相志磊,马腾飞,陈子勇,等.材料导报:综述篇,2013,27(5),110.
37 Qi W J, Wang S C, Chen X M, et al. Chinese Journal of Rare Metals,2013,37(2),179(in Chinese).
戚文军,王顺成,陈学敏,等.稀有金属,2013,37(2),179.
38 Ding Y H. First-principles verification of grain refinement mechanism of aluminum and aluminum alloys. Master’s Thesis, Yanshan University, China,2016(in Chinese).
丁彦红.铝和铝合金晶粒细化机制的第一性原理验证.硕士学位论文,燕山大学,2016.
39 Chumacher P, Greer A L. Materials Science & Engineering A,1994,178(1-2),309.
40 Fan Z, Wang Y, Zhang Y, et al. Acta Materialia,2015,84,292.
41 Bian X F. Cast metal genetics, Shandong Science and Technology Press, China,1999(in Chinese).
边秀房.铸造金属遗传学,山东科学技术出版社,1999.
42 Le Y K, Zhang J P, Chen D, et al. Special Casting & Nonferrous Alloys,2008,28(2),102(in Chinese).
乐永康,张建平,陈东,等.特种铸造及有色合金,2008,28(2),102.
43 Fjellstedt J, Jarfors A E W, Svendsen L. Journal of Alloys & Compounds,1999,283(1-2),192.
44 Liao C W, Chen Y J, Chen H, et al. The Chinese Journal of Nonferrous Metals,2016,26(1),204(in Chinese).
廖成伟,陈闻天,陈欢,等.中国有色金属学报,2016,26(1),204.
45 Liao C W. Preparation, characterization, property and application of advanced Al-based master alloys for refining and modification. Ph.D. Thesis, Wuhan University, China,2014(in Chinese).
廖成伟.新型铝中间合金细化剂和变质剂的研制、表征、性能及应用.博士学位论文,武汉大学,2014.
46 Tian R Z. Cast aluminum alloy, Central South University Press, China,2006(in Chinese).
田荣璋.铸造铝合金,中南大学出版社,2006.
47 Lakshmi S, Lu L, Gupta M. Advanced Composite Materials,1997,6(4),299.
48 Wang X P. The effect of reactants particle sizes on the kinetic parameters and the affect interpretation in solid-liquid reactions. Master’s Thesis, Taiyuan University of Technology, China,2010(in Chinese).
王肖鹏.反应物粒度对固液反应动力学的影响及其影响机理的研究.硕士学位论文,太原理工大学,2010.
49 Hua Y X. Kinetics of process metallurgy, Metallurgical Industry Press, China,2004(in Chinese).
华一新.冶金过程动力学,冶金工业出版社,2004.
50 Li H Z. Metallurgical principle, Science Press, China,2005(in Chinese).
李洪桂.冶金原理.科学出版社,2005.
51 Zhou L, Wang W, Xu H. Crystal Growth & Design,2008,8(2),728.
52 Liu X F, Bian F X, Yang Y. et al. Special-cast and Non-ferrous Alloys,1997(5),4(in Chinese).
刘相法,边秀房,杨阳,等.特种铸造及有色合金,1997(5),4.
53 Zhao R M, Tang H Y, Yang G, et al. Foundry Technology,2016(11),2426(in Chinese).
赵瑞敏,汤皓元,杨钢,等.铸造技术,2016(11),2426.
54 Wen R. Study on in-situ Al3Ti and TiB2 reinforced aluminum matrix composite synthesized with physical field assistance. Ph.D. Thesis, Jiangsu University, China,2013(in Chinese).
文荣.物理场下原位合成Al3Ti、TiB2增强铝基复合材料的研究.博士学位论文,江苏大学,2013.
55 Wang S C, Qi W J, Zheng K H, et al. Materials Research and Application,2014(1),19(in Chinese).
王顺成,戚文军,郑开宏,等.材料研究与应用,2014(1),19.
56 Ampbell J. Metallurgical Reviews,1981,26(1),71.
57 Abramov V O, Abramov O V, Straumal B B, et al. Materials & Design,1997,18(s4-6),323.
58 Han Y, Shu D, Wang J, et al. Materials Science & Engineering A,2006,430(1-2),326.
59 Chen M A, Zhuo L, Lei Q L, et al. Materials Review,1998(1),60(in Chinese).
陈明安,卓利,雷秋玲,等.材料导报,1998(1),60.
60 Dong T S, Zheng X D, Li X B, et al. China Foundry,2017,14(6),513.
61 Dong T S, Cui C X, Liu S J, et al. Rare Metal Materials and Enginee-ring,2008,37(1),29(in Chinese).
董天顺,崔春翔,刘双进,等.稀有金属材料与工程,2008,37(1),29.
[1] 李飞, 廖怡君, 王旭, 朱庆丰, 崔建忠. Zr元素对纯铝细化机理的电子理论研究[J]. 材料导报, 2018, 32(18): 3190-3194.
[2] 章震威, 王军丽, 张清龙, 史庆南. 等通道转角挤压制备超细晶材料的研究与发展[J]. 材料导报, 2017, 31(1): 116-125.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed